

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

СВИДЕТЕЛЬСТВО

об утверждении типа средств измерений

OC.E.29.156.A № 73756

Срок действия бессрочный

НАИМЕНОВАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ Система измерительная массового расхода и массы пара поз. ORA021F ПАО "Нижнекамскнефтехим"

ЗАВОДСКОЙ НОМЕР **ORA021F**

ИЗГОТОВИТЕЛЬ

Публичное акционерное общество "Нижнекамскнефтехим" (ПАО "Нижнекамскнефтехим"), Республика Татарстан, г. Нижнекамск

РЕГИСТРАЦИОННЫЙ № 74903-19

ДОКУМЕНТ НА ПОВЕРКУ МП 0512/1-311229-2018

ИНТЕРВАЛ МЕЖДУ ПОВЕРКАМИ 2 года

Тип средств измерений утвержден приказом Федерального агентства по техническому регулированию и метрологии от 29 апреля 2019 г. № 1015

Описание типа средств измерений является обязательным приложением к настоящему свидетельству.

Заместитель Руководителя	
Федерального агентства	

А.В.Кулешов

"......" 2019 г.

№ 035822

Серия СИ

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система измерительная массового расхода и массы пара поз. ORA021F ПАО «Нижнекамскнефтехим»

Назначение средства измерений

Система измерительная массового расхода и массы пара поз. ORA021F ПАО «Нижнекамскнефтехим» (далее – ИС) предназначена для измерений массового расхода и массы пара.

Описание средства измерений

Принцип действия ИС основан на непрерывном измерении, преобразовании и обработке с помощью системы обработки информации входных сигналов, поступающих по измерительным каналам от первичных измерительных преобразователей перепада давления, абсолютного давления и температуры.

Измерение массового расхода и массы пара выполняют методом переменного перепада давления в соответствии с ГОСТ 8.586.1–2005, который заключается в создании в измерительном трубопроводе сужения потока измеряемой среды с помощью диафрагмы, изготовленной в соответствии с ГОСТ 8.586.2–2005. Массовый расход и масса пара рассчитываются в соответствии с ГОСТ 8.586.5–2005 на основе измерений перепада давления на диафрагме, давления и температуры измеряемой среды в измерительном трубопроводе.

Состав средств измерений, входящих в состав ИС, представлен в таблице 1.

Таблица 1 – Состав средств измерений ИС

•	D V	
Наименование	Регистрационный номер в	
Паимснованис	Федеральном информационном фонде	
Датчик давления Метран-150 модели 150CD	32854-09	
Датчик давления «Метран-100» модели		
Метран-100-ДД	22235-01	
Датчик давления «Метран-100» модели		
Метран-100-Ех-ДА	22235-01	
Термометр сопротивления платиновый ТСПТ и		
его чувствительный элемент ЭЧПТ модели		
ТСПТ 101	36766-08	
Тепловычислитель СПТ961 (мод. 961.2) (далее –		
тепловычислитель)	35477-07	

Основные функции ИС:

- измерение перепада давления, абсолютного давления и температуры пара;
- вычисление физических свойств пара по МИ 2451–98;
- измерение массового расхода и массы пара в соответствии с ГОСТ 8.586.5–2005;
- регистрация, индикация, хранение и передача на верхний уровень результатов измерений;
 - формирование, отображение и печать текущих отчетов;
- защита системной информации от несанкционированного доступа к программным средствам и изменения установленных параметров.

Пломбирование ИС не предусмотрено.

Программное обеспечение

Программное обеспечение (далее – ПО) ИС обеспечивает реализацию функций ИС.

ПО ИС защищено от несанкционированного доступа, изменения алгоритмов и установленных параметров с помощью пломбирования тепловычислителя.

Уровень защиты ПО «высокий» в соответствии с Р 50.2.077–2014.

Таблица 2 – Идентификационные данные ПО

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	_
Номер версии (идентификационный номер) ПО	01
Цифровой идентификатор ПО	D8A4

Метрологические и технические характеристики

Таблица 3 – Метрологические характеристики

Наименование характеристики	Значение	
Диапазон измерений массового расхода пара, т/ч	от 15,4 до 190,2*	
Пределы допускаемой относительной погрешности измерений		
массового расхода и массы пара, %	±2,1	
*В зависимости от диаметра отверстия сужающего устройства при	температуре плюс 20 °C	
диапазон значений верхних пределов измерений изменяется от 190,07 до 190,20 т/ч.		

Таблица 4 – Основные технические характеристики

Наименование характеристики	Значение
Температура пара, °С	от +280 до +330
Абсолютное давление пара, МПа	от 3,2 до 3,6
Перепад давления на сужающем устройстве, кПа	от 2 до 250
Тип сужающего устройства	Диафрагма по
	ГОСТ 8.586.2–2005
Внутренний диаметр измерительного трубопровода перед	
сужающим устройством при температуре плюс 20 °C, мм	299,4
Допускаемые значения диаметра отверстия сужающего	от 190,905 до
устройства при температуре плюс 20 °C, мм	191,047
Параметры электрического питания:	
- напряжение переменного тока, В	220^{+22}_{-33}
- частота переменного тока, Гц	50±1
Потребляемая мощность, В.А, не более	500
Условия эксплуатации:	
– температура окружающего воздуха, °C	от +15 до +25
– относительная влажность, %, не более	95
– атмосферное давление, кПа	от 84,0 до 106,7

Знак утверждения типа

наносится на титульный лист паспорта типографским способом.

Комплектность средства измерений

Таблица 5 – Комплектность

Наименование	Обозначение	Количество
Система измерительная массового расхода и массы пара поз. ORA021F ПАО «Нижнекамскнефтехим», заводской № RL019F		1 шт.
Паспорт	_	1 экз.
Руководство по эксплуатации	_	1 экз.
Методика поверки	МП 0512/1-311229-2018	1 экз.

Поверка

осуществляется по документу МП 0512/1-311229-2018 «Государственная система обеспечения единства измерений. Система измерительная массового расхода и массы пара поз. ORA021F ПАО «Нижнекамскнефтехим». Методика поверки», утвержденному ООО Центр Метрологии «СТП» 05 декабря 2018 г.

Основные средства поверки:

 средства измерений в соответствии с документами на поверку средств измерений, входящих в состав ИС.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке ИС.

Сведения о методиках (методах) измерений

«Государственная система обеспечения единства измерений. Расход и масса пара. Методика измерений измерительным комплексом поз. ORA021F на OAO «Нижнекамскиефтехим» $\Gamma T Y$ -75», свидетельство об аттестации методики (метода) измерений № 393-200-01.00270-2010.

Нормативные документы, устанавливающие требования к системе измерительной массового расхода и массы пара поз. ORA021F ПАО «Нижнекамскнефтехим»

ГОСТ Р 8.618–2014 ГСИ. Государственная поверочная схема для средств измерений объемного и массового расходов газа

Изготовитель

Публичное акционерное общество «Нижнекамскнефтехим»

(ПАО «Нижнекамскнефтехим»)

ИНН 1651000010

Адрес: 423574 Республика Татарстан, Нижнекамский район, город Нижнекамск, улица Соболековская, здание 23, офис 129

Телефон: (8555) 37-70-09 Web-сайт: https://www.nknh.ru

E-mail: nknh@nknh.ru

Испытательный центр

Общество с ограниченной ответственностью Центр Метрологии «СТП»

Адрес: 420107, Республика Татарстан, г. Казань, ул. Петербургская, д. 50, корп. 5, офис 7

Телефон: (843) 214-20-98, факс: (843) 227-40-10

Web-сайт: http://www.ooostp.ru

E-mail: office@ooostp.ru

Аттестат аккредитации ООО Центр Метрологии «СТП» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.311229 от 30.07.2015 г.

Заместитель			
Руководителя Федерального			
агентства по техническому			
регулированию и метрологии			А.В. Кулешов
	М.п.	« »	2019 г.