ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Измерители оптико-радиолокационные многоцелевые «ОРАКУЛ»

Назначение средства измерений

Измерители оптико-радиолокационные многоцелевые «ОРАКУЛ» (далее по тексту – ИМ) предназначены для:

- измерения скорости движения транспортных средств (ТС);
- измерения расстояния от ИМ до ТС;
- измерения углов в горизонтальной и вертикальной плоскостях между нормалью к излучающей поверхности ИМ и направлением на TC (углы на TC);
 - определения координат места расположения ИМ;
- фотофиксации TC в зоне контроля с записью времени фиксации, координат места расположения ИМ и скорости TC.

Описание средства измерений

Принцип действия ИМ основан на:

- измерении скорости движения TC по разности частот между излученным ИМ радиолокационным сигналом и сигналом, отраженным от движущихся TC (эффект Доплера);
- измерении расстояния от ИМ до ТС по разности фаз между сигналами на различных несущих частотах;
- измерении углов на TC в горизонтальной и вертикальной плоскостях по разности фаз между сигналами, принятыми пространственно разнесенными антеннами;
- определении координат места расположения ИМ по данным, полученным от встроенного в ИМ приемника глобальной навигационной спутниковой системы ГЛОНАСС/GPS;
- определении времени фотофиксации TC по значению национальной шкалы координированного времени UTC (SU), по данным, полученным от встроенного в ИМ приемника глобальной навигационной спутниковой системы ГЛОНАСС/GPS (с разрядностью до секунды), и измерении интервала времени между фронтом секундного импульса (PPS) и моментом времени фотофиксации TC.

Фотофиксация TC в зоне контроля осуществляется оптическим методом с записью в кадр времени фиксации, координат места расположения ИМ и скорости TC. Зоной контроля является область (сектор), ограниченная максимальным расстоянием от ИМ до TC и диапазоном измерения углов на TC.

Конструктивно ИМ выполнен в едином влагозащищенном и ударопрочном корпусе с элементами крепления и содержит радиолокационный модуль, видеокамеру, вычислительный модуль, энергонезависимый накопитель данных, приемник глобальной спутниковой системы ГЛОНАСС/GPS. На корпусе ИМ установлена шильда, содержащая наименование, торговую марку изготовителя и знак утверждения типа средства измерений. ИМ защищен от несанкционированного вскрытия специальными пломбами, разрушающимися при попытке удаления.

Общий вид ИМ, место установки шильды и пломб на ИМ представлены на рисунке 1.

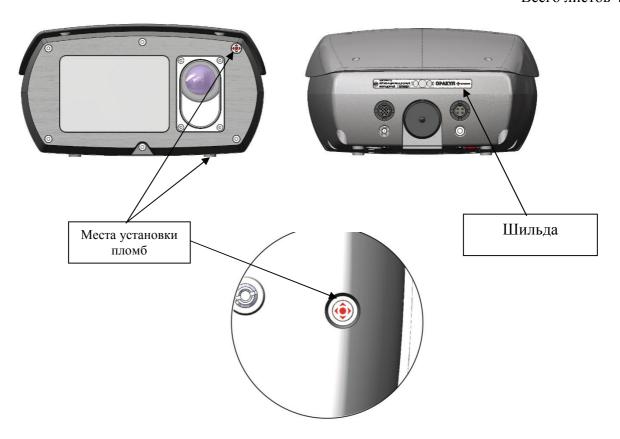


Рисунок 1 – Общий вид и места установки пломб на ИМ

Программное обеспечение

Программным обеспечением (ПО) ИМ является программа «Оракул» ПО «Оракул» содержит метрологически значимую часть «pde». Уровень защиты ПО «высокий» в соответствии с Р 50.2.077-2014.

Таблица 1 – Идентификационные данные метрологической части ПО

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	pde
Номер версии (идентификационный номер)	
метрологически значимой части ПО	1.02
Цифровой идентификатор ПО (контрольная сумма	
исполняемого кода)	_

Метрологические и технические характеристики

Таблица 2 – Метрологические характеристики

Наименование характеристики	Значение
Диапазон измеряемых скоростей движения ТС, км/ч	от 2 до 350
Пределы допускаемой абсолютной погрешности измерений	
скорости движения ТС, км/ч	±2
Диапазон измерений расстояния от ИМ до ТС, м	от 10 до 150
Пределы допускаемой абсолютной погрешности измерений	
расстояния от ИМ до ТС, м	±1
Диапазон измерений углов на ТС, градус	от +10 до -10
Пределы допускаемой абсолютной погрешности измерений	
углов на ТС, градус	±1

Продолжение таблицы 2

1 ' '	
Наименование характеристики	Значение
Пределы допускаемой абсолютной погрешности отклонения	
времени ИМ от национальной шкалы координированного	
времени UTC (SU), мс	±3
Границы допускаемой абсолютной инструментальной	
погрешности (при доверительной вероятности 0,95)	
определения координат в плане места расположения ИМ, м	±5

Таблица 3 – Основные технические характеристики

тиолица 5 Основные техни теские характеристики		
Наименование характеристики	Значение	
Рабочая частота излучения ИМ, ГГц	от 24,050 до 24,250	
Зона контроля:		
длина, м, не более	150	
угол, градус, не более	20	
Напряжение питания от сети постоянного тока, В	от 10 до 16	
Потребляемая мощность, Вт, не более	20	
Условия эксплуатации:		
- температура окружающего воздуха, °С	от -40 до +50	
- относительная влажность воздуха при +25 °C, %	до 98	
- атмосферное давление, кПа	от 60 до 106,7	
Масса ИМ, кг, не более	3	
Габаритные размеры ИМ, мм, не более:		
- длина	320	
- ширина	255	
- высота	150	

Знак утверждения типа

наносится на шильду, расположенную на корпусе ИМ, а также типографским или иным способом на титульный лист паспорта БКЮФ.201219.022ПС.

Комплектность средства измерений

Таблица 4 – Комплектность средства измерений

Наименование	Обозначение	Количество
Измеритель оптико-радиолокационный		
многоцелевой «ОРАКУЛ»	БКЮФ.201219.022	1 шт.
Измеритель оптико-радиолокационный		
многоцелевой «ОРАКУЛ». Паспорт	БКЮФ.201219.022ПС	1 экз.
Измерители оптико-радиолокационные		
многоцелевые «ОРАКУЛ». Методика	БКЮФ.201219.022МП	1 экз.
поверки		
Измеритель оптико-радиолокационный		
многоцелевой «ОРАКУЛ». Руководство по		
эксплуатации	БКЮФ.201219.022РЭ	1 экз.

Поверка

осуществляется по документу БКЮФ.201219.022МП «Измерители оптико-радиолокационные многоцелевые «ОРАКУЛ». Методика поверки», утвержденному ФГУП «ВНИИФТРИ» 30 ноября 2018 г.

Основные средства поверки:

- имитатор параметров движения транспортных средств «Сапсан 3М», регистрационный номер 73015-18 в Федеральном информационном фонде;
- имитатор сигналов глобальных навигационных спутниковых систем ГЛОНАСС/GPS/GALILEO/SBAS GSG 5-й серии, регистрационный номер 58306-14 в Федеральном информационном фонде;
- источники первичные точного времени УКУС-ПИ 02ДМ, регистрационный номер 60738-15 в Федеральном информационном фонде;

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых ИМ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке в виде наклейки или оттиска поверительного клейма.

Сведения о методиках (методах) измерений

приведены в эксплуатационной документации.

Нормативные документы, устанавливающие требования к измерителям оптикорадиолокационным многоцелевым «ОРАКУЛ»

Государственная поверочная схема для средств измерений времени и частоты. Приказ Росстандарта № 1621 от 31.07.2018 г.

«Измеритель оптико-радиолокационный многоцелевой «ОРАКУЛ». Технические условия БКЮФ.201219.022ТУ

Изготовитель

Общество с ограниченной ответственностью «ОЛЬВИЯ» (ООО «ОЛЬВИЯ»)

ИНН 7802595490

Адрес: 194156, г. Санкт-Петербург, пр. Энгельса д.27, корп. 5 лит. А

Тел./факс: (812) 326-38-41 E-mail: info@olvia.ru

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт физико-технических и радиотехнических измерений» (Φ ГУП «ВНИИ Φ ТРИ»)

Юридический адрес: 141570, Московская область, Солнечногорский р-н, рабочий поселок Менделеево, промзона ВНИИФТРИ

Адрес: 141570, Московская область, Солнечногорский р-н, п/о Менделеево

Тел./факс: (495) 526-63-00 E-mail: <u>office@vniiftri.ru</u>

Аттестат аккредитации ФГУП «ВНИИФТРИ» по проведению испытаний средств измерений в целях утверждения типа № 30002-13 от 11.05.2018 г.

Заместитель
Руководителя Федерального
агентства по техническому
регулированию и метрологии

А.В. Кулешов