

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

СВИДЕТЕЛЬСТВО

об утверждении типа средств измерений

OC.C.32.172.A № 73946

Срок действия до 24 мая 2024 г.

НАИМЕНОВАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ

Системы для определения показателя текучести расплава Mflow, Aflow,

Cflow

ИЗГОТОВИТЕЛЬ
"ZwickRoell GmbH & Co. KG", Германия

РЕГИСТРАЦИОННЫЙ № 75089-19

ДОКУМЕНТ НА ПОВЕРКУ МП-ТМС-009/18

ИНТЕРВАЛ МЕЖДУ ПОВЕРКАМИ 1 год

Тип средств измерений утвержден приказом Федерального агентства по техническому регулированию и метрологии от **24 мая 2019 г.** № **1152**

Описание типа средств измерений является обязательным приложением к настоящему свидетельству.

Заместитель Руководителя	А.В.Кулешов
Федерального агентства	
	 2019 г.

№ 036095

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Системы для определения показателя текучести расплава Mflow, Aflow, Cflow

Назначение средства измерений

Системы для определения показателя текучести расплава Mflow, Aflow, Cflow (далее - системы) предназначены для измерения температуры образцов и перемещения поршня, и воспроизведения механической нагрузки при определении показателя текучести расплава термопластов по методу, изложенному в ГОСТ 11645-73.

Описание средства измерений

Принцип работы систем основан на измерении перемещения поршня и температуры образца испытываемого термопласта при заданной механической нагрузке с целью определения показателя текучести.

Конструктивно системы состоят из экструзионной камеры, установленной на основании в вертикальном положении. Камера имеет канал с нагревом, внизу которого устанавливается капилляр необходимого диаметра и длины. Для создания механической нагрузки в канал устанавливается поршень с термоизоляцией для грузов заданной массы. Перемещение поршня измеряется датчиком перемещений.

Модификации систем отличаются степенью автоматизации, массой и габаритными размерами. Модификация Mflow может быть оснащена пневматическим механизмом перемещения грузов или механизмом выставления заданной нагрузки, а также автоматическим отрезным механизмом. Модификация Aflow оснащена автоматическим нагружающим устройством и автоматическим отрезным механизмом. Модификация Cflow может быть оснащена ручным или автоматическим отрезным механизмом, грузы устанавливаются вручную, отсутствует функция измерений перемещения поршня.

Управление, обработка, сбор информации и отображение результатов измерений в модификациях Mflow и Aflow осуществляется при помощи пульта оператора, снабженного клавиатурой и дисплеем. Системы с модификациями Mflow и Aflow могут подключаться к персональному компьютеру с программным обеспечением для анализа результатов измерений.

Наименование модификации указывается на фронтальной стороне систем. Заводская табличка отображает наименование систем только в соответствии с внутренней классификацией изготовителя.

Общий вид систем для определения показателя текучести расплава Mflow, Aflow, Cflow представлен на рисунках 1 - 3.

Рисунок 1 – Общий вид систем модификаций Mflow

Рисунок 2 – Общий вид систем модификаций Aflow

Рисунок 3 – Общий вид систем модификаций Cflow

Пломбирование систем не предусмотрено

Программное обеспечение

Программное обеспечение (далее - ПО) систем модификаций Mflow и Aflow состоит из двух частей: встроенного ПО «firmware», установленного в измерительном блоке и внешнего ПО «testXpert» («testXpert II», «testXpert III»), устанавливаемого на ПК. Обработку результатов измерений, обмен информацией с внешними системами, считывание данных и просмотр результатов измерений обеспечивает встроенное ПО, которое является метрологически значимым. Внешнее ПО предназначено только для считывания данных, и просмотра результатов измерений. У систем модификации Cflow ПО отсутствует.

Уровень защиты программного обеспечения от непреднамеренных и преднамеренных изменений - «средний» в соответствии с Р 50.2.077-2014.

Идентификационные данные ПО приведены в таблице 1

Таблица 1 - Идентификационные данные ПО

Tuomigu T Tigoningmagnomible gamible 110		
Идентификационные данные (признаки)	Значение	
Идентификационное наименование ПО	firmware	
Номер версии (идентификационный номер) ПО, не ниже	V 2.0	
Цифровой идентификатор ПО	-	

Метрологические и технические характеристики

Таблица 2 – Метрологические характеристики

Наименование характеристики	Значение		
Модификация	Mflow	Aflow	Cflow
Диапазон воспроизведения испытательной	от 0,325	от 0,325	от 0,325
нагрузки, кг	до 21,6	до 50	до 21,6
Пределы допускаемой относительной погрешности воспроизведения испытательной нагрузки, %		±0,5	

Продолжение таблицы 2

Наименование характеристики	Значение		
Модификация	Mflow	Aflow	Cflow
Диапазон измерений перемещения поршня, мм	от 5,0 до 30,0	от 5,0 до 50,0	-
Пределы допускаемой абсолютной погрешности измерений перемещения поршня, мм	±0,1		-
Диапазон измерений температуры, °С	от 50 до 450		от 125 до 400
Пределы допускаемой абсолютной погрешности измерений температуры, °C		±0,1	
Нестабильность поддержания установленной температуры, °C		±0,5	

Таблица 3 – Основные технические характеристики

Таблица 3 – Основные технические характеристики			
Наименование характеристики	Значение		
Модификация	Mflow	Aflow	Cflow
Габаритные размеры (высота \times ширина \times глубина), мм, не более	1078 × 360 × 597	1200 × 580 × 600	850 × 270 × 400
Масса, кг, не более	70,6	130,0	46,6
Номинальный внутренний диаметр канала экструзионной камеры, мм	от 9,5 до 10,0		
Допускаемое абсолютное отклонение внутреннего диаметра канала экструзионной камеры, мм	+ 0,036		
Высота экструзионной камеры, мм	от 115 до 180		
Длина направляющей головки, мм	6,35		
Допускаемое абсолютное отклонение длины направляющей головки, мм	±0,10		
Диаметр направляющей головки, мм	9,480		
Допускаемое абсолютное отклонение диаметра направляющей головки, мм	-0,015		
Радиус закругления нижней кромки направляющей головки, мм	от 0,2 до 0,4		
Шероховатость нижней кромки направляющей головки и верхней кромки капилляра, Ra, мкм, не более		0,160	
Длина капилляра, мм	8,000		
Допускаемое абсолютное отклонение длины капилляра, мм	±0,025		
Внутренний диаметр капилляра, мм	2,095 или 1,180		
Допускаемое абсолютное отклонение внутреннего диаметра капилляра, мм	±0,005		
Площадь открытой поверхности основания камеры, см ² , не более	4,0		
Условия эксплуатации: - температура окружающей среды, °С - относительная влажность, при температуре менее 30 °С,	от +10 до +35		
без конденсации влаги, %, не более		75	

Знак утверждения типа

наносится на титульный лист руководства по эксплуатации типографским способом.

Комплектность средства измерений

Таблица 4 – Комплектность средства измерений

Наименование	Обозначение	Количество
Система для определения показателя текучести расплава Mflow, Aflow, Cflow	-	1 шт.
ПО «testXpert I», «testXpert II», «testXpert III» (опционально)	-	1 шт.
Методика поверки	MΠ-TMC-009/18	1 экз.
Руководство по эксплуатации	РЭ	1 экз.

Поверка

осуществляется по документу МП-ТМС-009/18 «Системы для определения показателя текучести расплава Mflow, Aflow, Cflow. Методика поверки», утверждённому ООО «ТМС PYC» 20.09.2018 г.

Основные средства поверки:

- термометр сопротивления платиновый вибропрочный эталонный ПТСВ-1-2, $(50-450)^{\circ}$ С, 2 разряд, (рег. №32777-06);
- измеритель температуры многоканальный прецизионный МИТ 8.10М, (0 375) Ом, 2 разряд, (рег. № 40719-15);
- весы электронные лабораторные XE-3000, (2,5 3000,0) г, КТ высокий, (рег. № 63123-16);
 - весы электронные DB-II-150E, (0,4 150,0) г, КТ средний, (рег. № 50312-12);
 - **-** динамометр электронный переносной ДЭП/3-1Д-0,1У-1 (рег. № 66698-17);
 - динамометр электронный переносной ДЭП/3-1Д-1У-1 (рег. № 66698-17);
- прибор для измерений параметров шероховатости поверхности TR100, Ra (0,05-10) мкм, ПГ \pm 15 %, (рег. № 58865-14);
- машина трехкоординатная измерительная DEA Global версия PERFORMANCE типоразмер 07.10.07 (рег. № 63813-16);
 - штангенциркуль ШЦЦ-300, (0 300) мм, ПГ ±0,04 мм, (рег. № 64144-16);
- меры длины концевые плоскопараллельные Набор №1, (0 100) мм, КТ 1 (рег. № 62321-15);
 - индикатор ИЧ-50, (0 50) мм, КТ 1, (рег. № 64188-16);
 - микрометр гладкий цифровой МК Ц25, (0 25) мм, КТ 1, (рег. № 50593-12).

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке.

Сведения о методиках (методах) измерений

приведены в эксплуатационной документации.

Нормативные и технические документы, устанавливающие требования к системам для определения показателя текучести расплава Mflow, Aflow, Cflow

ГОСТ 11645-73 Пластмассы. Метод определения показателя текучести расплава термопластов

Техническая документация изготовителя

Изготовитель

«ZwickRoell GmbH & Co. KG», Германия

Адрес: August-Nagel Str. 11 D-89079 Ulm, Germany Тел.: +49 7305 10 – 0, факс: +49 7305 10 - 11200

E-mail: info@zwickroell.com

Заявитель

Общество с ограниченной ответственностью «ЦвикРёль трейдинг-М» (ООО «ЦвикРёль трейдинг-М»)

ИНН 7708571452

Адрес: 121151, г. Москва, Раевского, дом 4, этаж 4, комн.16

Тел.: +7 (495) 783-88-12, факс: +7 (495) 783-88-13

E-mail: info@zwick.ru

Испытательный центр

Общество с ограниченной ответственностью «ТМС РУС» (ООО «ТМС РУС»)

Адрес: 140208, Московская область, г. Воскресенск, ул. Быковского, д. 2 Юридический адрес: 127083, г. Москва, ул. Верхняя Масловка, д. 20, стр. 2

Тел.: +7 (495) 221-18-04, факс: +7 (495) 229-02-35

E-mail: <u>tuev@tuev-sued.ru</u>

Аттестат аккредитации ООО «ТМС РУС» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.312318 от 17.10.2017 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

А.В. Кулешов

М.п. «___ » _____ 2019 г.