

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

СВИДЕТЕЛЬСТВО

об утверждении типа средств измерений

OC.E.34.010.A № 74026

Срок действия бессрочный

НАИМЕНОВАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ПС 220 кВ "НОРБИ"

ЗАВОДСКОЙ НОМЕР 1234

ИЗГОТОВИТЕЛЬ

Общество с ограниченной ответственностью "НОРБИ" (ООО "НОРБИ"), Волгоградская область, г. Волжский

РЕГИСТРАЦИОННЫЙ № 75168-19

ДОКУМЕНТ НА ПОВЕРКУ РТ-МП-5783-500-2019

ИНТЕРВАЛ МЕЖДУ ПОВЕРКАМИ 4 года

Тип средств измерений утвержден приказом Федерального агентства по техническому регулированию и метрологии от **31 мая 2019 г.** № **1268**

Описание типа средств измерений является обязательным приложением к настоящему свидетельству.

Заместитель	Руководителя
Федеральног	о агентства

А.В.Кулешов

"...... 2019 г.

№ 036245

Серия СИ

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ПС 220 кВ «НОРБИ»

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ПС 220 кВ «НОРБИ» (далее по тексту – АИИС КУЭ) предназначена для измерений активной и реактивной электроэнергии, сбора, обработки, хранения и передачи полученной информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную трехуровневую автоматизированную систему с централизованным управлением и распределенной функцией измерения.

Измерительные каналы (ИК) АИИС КУЭ включают в себя следующие уровни:

АИИС КУЭ включают в себя следующие уровни:

первый уровень – измерительно-информационные комплексы точек измерений (ИИК ТИ), включающие в себя измерительные трансформаторы напряжения (ТН), измерительные трансформаторы тока (ТТ), многофункциональные счетчики активной и реактивной электрической энергии (счетчики), вторичные измерительные цепи и технические средства приема-передачи данных;

второй уровень – информационно-вычислительный комплекс электроустановки (ИВКЭ), включающий в себя устройство сбора и передачи данных (УСПД), технические средства приема-передачи данных, каналы связи для обеспечения информационного взаимодействия между уровнями системы, коммутационное оборудование, устройство синхронизации времени УССВ-2 регистрационный номер в Федеральном информационном фонде 54074-13 (Рег. № 54074-13);

третий уровень – информационно-вычислительный комплекс (ИВК), включающий в себя каналообразующую аппаратуру, сервер АИИС КУЭ, автоматизированные рабочие места персонала (APM), каналообразующую аппаратуру, средства связи, приема-передачи данных и программное обеспечение (ПО).

АИИС КУЭ обеспечивает выполнение следующих функций:

сбор информации о результатах измерений активной и реактивной электрической энергии;

синхронизация времени компонентов АИИС КУЭ с помощью системы обеспечения единого времени (COEB), соподчиненной национальной шкале координированного времени UTC (SU);

хранение информации по заданным критериям;

доступ к информации и ее передача в организации-участники оптового рынка электроэнергии и мощности (ОРЭМ) (по запросу);

измерение 30-минутных приращений активной и реактивной электроэнергии;

периодический (один раз в сутки) и/или по запросу автоматический сбор, привязанных к шкале координированного времени UTC(SU), результатов измерений приращений электроэнергии с заданной дискретностью учета (30 мин);

хранение результатов измерений в специализированной базе данных, отвечающей требованию повышенной защищенности от потери информации (резервирование баз данных) и от несанкционированного доступа;

обеспечение защиты оборудования, программного обеспечения и данных от несанкционированного доступа на физическом и программном уровне (установка паролей и т.п.);

диагностика и мониторинг функционирования технических и программных средств АИИС КУЭ;

конфигурирование и настройка параметров АИИС КУЭ;

сбор, хранение и передачу журналов событий счетчиков.

Первичные токи и напряжения преобразуются измерительными трансформаторами в аналоговые унифицированные сигналы, которые по измерительным линиям связи поступают на входы счетчика электроэнергии, где производится измерение мгновенных и средних значений активной и реактивной мощности. На основании средних значений мощности измеряются приращения электроэнергии за интервал времени 30 мин.

УСПД автоматически проводит сбор результатов измерений и состояния средств измерений со счетчиков электрической энергии (один раз в 30 мин) по проводным линиям связи (интерфейс RS-485).

Один раз в сутки оператор ИВК АИИС КУЭ ЕНЭС формирует файл отчета с результатами измерений, в формате XML и передает его в ПАК АО «АТС» и в АО «СО ЕЭС» и смежным субъектам ОРЭМ.

Каналы связи не вносят дополнительных погрешностей в измеренные значения энергии и мощности, которые передаются от счетчиков в ИВК, поскольку используется цифровой метод передачи данных.

АИИС КУЭ оснащена системой обеспечения единого времени (СОЕВ), которая автоматически поддерживает единое календарное время. СОЕВ функционирует на всех уровнях АИИС КУЭ. В СОЕВ входят УССВ и таймеры счетчиков, УСПД, сервер. В качестве УССВ используется устройство синхронизации системного времени (УССВ-2) подключаемое к УСПД.

Полученное от УСПД точное время, один раз в 30 минут, устанавливается на сервере.

Контроль времени сервера осуществляется при каждом сеансе связи с УСПД; коррекция времени сервера осуществляется при расхождении времени сервера со временем УСПД на величину более чем ± 1 с.

В процессе сбора информации из счетчиков с периодичностью один раз в 30 мин, УСПД автоматически выполняет проверку текущего времени в счетчиках и в случае расхождения более чем на ± 2 с, автоматически выполняет синхронизацию текущего времени в счетчиках.

СОЕВ обеспечивает синхронизацию времени компонентов АИИС КУЭ от источника точного времени, регистрацию даты, времени событий с привязкой к ним данных измерений количества электрической энергии с точностью не хуже ± 5 с.

Программное обеспечение

В АИИС КУЭ используется специализированное программное обеспечение «АльфаЦЕНТР». ПО «АльфаЦЕНТР» используется при коммерческом учете электрической энергии и обеспечивает обработку, организацию учета и хранения результатов измерения, а также их отображение, распечатку с помощью принтера и передачу в форматах, предусмотренных регламентом оптового рынка электроэнергии.

Идентификационные данные метрологически значимой части ПО АИИС КУЭ представлены в таблице 1.

Таблица 1 - Идентификационные данные метрологически значимой части ПО АИИС КУЭ

Идентификационные данные (признаки)	Значение		
Наименование ПО	ПО «АльфаЦЕНТР»		
Номер версии (идентификационный номер) ПО	12.01		
Цифровой идентификатор ПО	3e736b7f380863f44cc8e6f7bd211c54		
Другие идентификационные данные	ac metrology.dll		
(если имеются)	ac_metrology.un		
Примечание - Алгоритм вычисления цифрового идентификатора ПО - MD5			

ПО «АльфаЦЕНТР» не влияет на метрологические характеристики измерительных каналов (ИК) АИИС КУЭ, указанные в таблице 3.

Уровень защиты ПО «высокий» в соответствии с Р 50.2.077-2014.

Метрологические и технические характеристики

Состав ИК АИИС КУЭ и их метрологические и технические характеристики приведены в таблицах 2, 3, 4.

Таблица 2 - Состав ИК АИИС КУЭ

	ица 2 - Состав ИК А	Состав ИК АИИС КУЭ				
№ MK	Наименование ИК	TT	TH	Счетчик	ИВКЭ	ИВК
1	2	3	4	5	6	7
1	ВЛ 220 кВ Трубная – Норби Ввод 1	ТG245N кл.т. 0,2S Ктт =1200/5 Зав. № 2GPD000888; 2GPD000887; 2GPD000886 Рег. № 30489-09	СРВ 245 кл.т 0,2 Ктн = (220000/√3)/(100/√3) Зав. № 8883354; 8883353; 8883352 Рег. № 47844-11	A1802RAL-P4G- DW-4 кл.т 0,2S/0,5 Зав. № 01325525 Рег. № 31857-11		
2	ВЛ 220 кВ Трубная – Норби Ввод 2	ТG245N кл.т. 0,2S Ктт =1200/5 Зав. № 2GPD000882; 2GPD000881; 2GPD000880 Рег. № 30489-09	СРВ 245 кл.т 0,2 Ктн = (220000/√3)/(100/√3) Зав. № 8883354; 8883353; 8883352 Рег. № 47844-11	A1802RAL-P4G- DW-4 кл.т 0,2S/0,5 Зав. № 01325526 Per. № 31857-11	7L-E2-B06-M02 3ab. №012018 Per. № 419 УССВ-2 3ab. № 002300 Per. № 54074-13	ИИС КУЭ
3	ВЛ 220 кВ Волжская — Норби Ввод 1	ТG245N кл.т. 0,2S Ктт =1200/5 Зав. № 2GPD000885; 2GPD000884; 2GPD000883 Рег. № 30489-09	СРВ 245 кл.т 0,2 Ктн = (220000/√3)/(100/√3) Зав. № 8883351; 8883350; 8883349 Рег. № 47844-11	A1802RAL-P4G- DW-4 кл.т 0,2S/0,5 Зав. № 01325527 Per. № 31857-11	RTU-327L-E2-B06-M02 3aв. №012018 Per. № 41907-09, УССВ-2 3aв. № 002300 Per. № 54074-13	Сервер АИИС КУЭ
4	ВЛ 220 кВ Волжская — Норби Ввод 2	TG245N Kл.т. 0,2S Kтт =1200/5 Зав. № 2GPD000879; 2GPD000878; 2GPD000877 Рег. № 30489-09	СРВ 245 кл.т 0,2 Ктн = (220000/√3)/(100/√3) Зав. № 8883351; 8883350; 8883349 Рег. № 47844-11	A1802RAL-P4G- DW-4 кл.т 0,2S/0,5 Зав. № 01325528 Рег. № 31857-11	RTU-:	

Примечания:

- 1 Допускается замена ТТ, ТН и счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в Таблице 2, при условии, что Предприятие-владелец АИИС КУЭ не претендует на улучшение указанных в таблице 3 метрологических характеристик.
- 2 Допускается замена УСПД на аналогичные утвержденных типов.
- 3 Замена оформляется техническим актом в установленном на Предприятии-владельце АИИС КУЭ порядке, вносят изменение в эксплуатационные документы. Технический акт хранится совместно с эксплуатационными документами на АИИС КУЭ как неотъемлемая часть.

Таблица 3 - Метрологические характеристики ИК АИИС КУЭ

тиолица 3 пистрологи теские характеристики инститите ку 3						
		Пределы допу	ускаемой отност	ительной погрег	шности ИК при	
Harran MV	2000	измерении ан	ктивной электр	оэнергии в ра	абочих условиях	
Номер ИК	cosφ	применения АІ	применения АИИС КУЭ (d), %			
		$I_{1(2)}$ £ $I_{изм}$ < $I_{5\%}$	$I_{5\%}$ £ $I_{_{13M}}$ < $I_{20\%}$	I_{20} %£ $I_{u_{3M}}$ < I_{100} %	I_{100} %£ $I_{изм}$ £ I_{120} %	
	1,0	±1,2	± 0.8	±0,8	±0,8	
1 - 4	0,9	±1,3	±0,9	±0,8	±0,8	
(TT 0,2S; TH 0,2;	0,8	±1,4	±1,0	±0,9	±0,9	
Счетчик 0,2S)	0,7	±1,6	±1,1	±1,0	±1,0	
	0,5	±2,1	±1,4	±1,2	±1,2	
	Пределы доп	ускаемой относ	ительной погрег	иности ИК при		
. измерении реактивной электроэнергии в рабочих					абочих условиях	
Номер ИК	sinф применения АИИС КУЭ (d), %					
		$I_{1(2)}$ £ $I_{изм}$ < $I_{5\%}$	I_{5} %£ $I_{\text{\tiny H3M}}$ < I_{20} %	I_{20} %£ $I_{u_{3M}}$ < I_{100} %	I ₁₀₀ %£ I изм£ I 120 %	
1 – 4	0,44	±2,9	±2,5	±2,0	±2,0	
Т – 4 (TT 0,2S; TH 0,2; Счетчик 0,5)	0,6	±2,5	±2,3	±1,8	±1,8	
	0,71	±2,4	±2,2	±1,7	±1,7	
C4C14IK 0,3)	0,87	±2,2	±2,1	±1,7	±1,7	

Пределы абсолютной погрешности синхронизации часов компонентов СОЕВ АИИС КУЭ к шкале координированного времени UTC(SU) ± 5 с

Примечания:

- 1 Характеристики погрешности ИК даны для измерения электроэнергии (получасовая).
- 2~B качестве характеристик относительной погрешности указаны пределы относительной погрешности, соответствующие доверительной вероятности P=0.95.

Таблица 4 – Основные технические характеристики ИК

Наименование характеристики	Значение
1	2
Нормальные условия применения:	
параметры сети:	
напряжение, % от U _{ном}	от 98 до 102
Tok, % ot I_{hom}	от 100 до 120
частота, Гц	от 49,85 до 50,15
коэффициент мощности cosj	0,9
температура окружающей среды, °С	от +15 до +25
относительная влажность воздуха при +25 °C, %	от 30 до 80
Рабочие условия применения:	
параметры сети:	от 90 до 110
напряжение, % от Uном	от 1 до 120
Tok, % ot I_{hom}	от 1 до 120
коэффициент мощности	от 0,5 $_{\rm инд.}$ до 0,8 $_{\rm emk.}$
частота, Гц	от 49,6 до 50,4
температура окружающей среды для ТТ и ТН, °С	от -40 до +50
температура окружающей среды для счетчиков, УСПД, УССВ-2, °С	от +5 до +35
относительная влажность воздуха при +25 °C, %	от 75 до 98
Надежность применяемых в АИИС КУЭ компонентов:	
Счетчики:	
среднее время наработки на отказ, ч, не менее	120000
среднее время восстановления работоспособности, ч	48

Продолжение таблицы 4

1	2
УСПД:	
среднее время наработки на отказ, ч, не менее:	100000
среднее время восстановления работоспособности, ч	48
Глубина хранения информации	
Счетчики:	
тридцатиминутный профиль нагрузки, сут, не менее	172
при отключении питания, лет, не менее	5
УСПД:	
суточные данные о тридцатиминутных приращениях	
электропотребления по каждому каналу и электропотребление за	
месяц по каждому каналу, сут, не менее	45
при отключении питания, лет, не менее	5
Серверы:	
хранение результатов измерений и информации состояний средств	
измерений, лет, не менее	3,5

Надежность системных решений:

резервирование питания УСПД с помощью источника бесперебойного питания и устройства АВР;

резервирование каналов связи: информация о результатах измерений может передаваться с помощью электронной почты и сотовой связи;

В журналах событий счетчиков и УСПД фиксируются факты:

параметрирования;

пропадания напряжения;

коррекция шкалы времени.

Защищенность применяемых компонентов:

наличие механической защиты от несанкционированного доступа и пломбирование:

счетчиков электроэнергии;

промежуточных клеммников вторичных цепей напряжения;

испытательной коробки;

УСПД.

Наличие защиты на программном уровне:

пароль на счетчиках электроэнергии;

пароль на УСПД;

пароли на сервере, предусматривающие разграничение прав доступа к измерительным данным для различных групп пользователей.

Знак утверждения типа

наносится на титульный лист паспорта-формуляра АИИС КУЭ типографским способом.

Комплектность средства измерений

Комплектность средства измерений приведена в таблице 5.

Таблица 5 - Комплектность средства измерений

Наименование	Обозначение	Количество
Трансформатор тока	TG245N	12 шт.
Трансформатор напряжения	CPB 245	6 шт.
Счетчики электрической энергии многофункциональные	A1802RAL-P4G-DW-4	4 шт.
Паспорт – формуляр	ЭРЮГ40104.006.04.ФО	1 экз.
Методика поверки	РТ-МП-5783-500-2019	1 экз.

Поверка

осуществляется по документу РТ-МП-5783-500-2019 «ГСИ. Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ПС 220 кВ «НОРБИ». Методика поверки», утвержденному ФБУ «Ростест-Москва» 29.03.2019 г.

Основные средства поверки:

трансформаторов тока – по ГОСТ 8.217-2003;

трансформаторов напряжения – по ГОСТ 8.216-2011;

счетчиков Альфа A1800 – по методике поверки ДЯИМ.411152.018 МП, утвержденной ГЦИ СИ ФГУ «Ростест-Москва» в 2011 г.;

УСПД – по методике поверки ДЯИМ.466.453.005МП, утвержденной ФГУП «ВНИИМС» в 2008 г.:

УССВ-2 — по методике поверки МП-РТ-1906-2013 (ДЯИМ.468213.001МП), утвержденной ФБУ «Ростест-Москва» в 2013 г.;

прибор для измерения электроэнергетических величин и показателей качества электрической энергии «Энергомонитор» 3.3T1, регистрационный номер в Федеральном информационном фонде 39952-08;

прибор комбинированный Testo 622 регистрационный номер в Федеральном информационном фонде 53505-13;

радиочасы МИР РЧ-02, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS) регистрационный номер в Федеральном информационном фонде 46656-11.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке.

Сведения о методиках (методах) измерений

приведены в документе «Методика (методы) измерений количества электрической энергии с использованием автоматизированной информационно-измерительной системы коммерческого учета электроэнергии (АИИС КУЭ) ПС 220 кВ «НОРБИ».

Нормативные документы, устанавливающие требования к АИИС КУЭ

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия

ГОСТ 34.601-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания

Изготовитель

Общество с ограниченной ответственностью «НОРБИ»

(ООО «НОРБИ»)

ИНН 3443058340

Адрес: 404103, Волгоградская область, г. Волжский, ул. Александрова, 59, этаж 2, помещение 7

Телефон: +7 (8443) 21-05-10, доб.416

Заявитель

Общество с ограниченной ответственностью «Энергия Юга» (ООО «Энергия Юга»)

Адрес: 400011, г. Волгоград, ул. Электролесовская, 76

Телефон: +7 (8442) 99-04-04, доб. 1191

Факс: +7 (8442) 99-04-04

Испытательный центр

Федеральное бюджетное учреждение «Государственный региональный центр стандартизации, метрологии и испытаний в г. Москве и Московской области»

(ФБУ «Ростест-Москва»)

Адрес: 117418, г. Москва, Нахимовский проспект д. 31

Телефон: +7 (495) 544-00-00, +7 (499) 129-19-11

Факс: +7 (499) 124-99-96 E-mail: <u>info@rostest.ru</u>

Регистрационный номер RA.RU.310639 в Реестре аккредитованных лиц в области обеспечения единства измерений Росаккредитации.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

А.В. Кулешов

М.п. « » 2019 г.