ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «СДК», ООО «БЩЗ»

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «СДК», ООО «БЩЗ» (далее – АИИС КУЭ) предназначена для измерений активной и реактивной электроэнергии, автоматизированного сбора, обработки, хранения, формирования отчетных документов и передачи полученной информации заинтересованным организациям в рамках согласованного регламента.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, двухуровневую автоматизированную систему с централизованным управлением и распределенной функцией измерений.

АИИС КУЭ включает в себя следующие уровни:

1-й уровень — измерительно-информационные комплексы (ИИК), включающие в себя измерительные трансформаторы тока (ТТ), измерительные трансформаторы напряжения (ТН) и счетчики активной и реактивной электрической энергии (счетчики), вторичные измерительные цепи и технические средства приема-передачи данных.

2-й уровень — информационно-вычислительный комплекс (ИВК) с функциями информационно-вычислительного комплекса электроустановки (ИВКЭ), включающий в себя сервер с программным обеспечением (ПО) «АльфаЦЕНТР», автоматизированные рабочие места персонала (АРМ), каналообразующую аппаратуру, технические средства для организации локальной вычислительной сети и разграничения прав доступа к информации.

Первичные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности, которые усредняются за период 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мощности.

Электрическая энергия, как интеграл по времени от средней за период 0,02 с мощности, вычисляется для интервалов времени 30 мин.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение мгновенных значений мощности на интервале времени усреднения 30 мин.

Цифровой сигнал с выходов счетчиков по проводным линиям связи поступает на входы соответствующего GSM-модема, далее по каналам связи стандарта GSM поступает на сервер, где осуществляется обработка измерительной информации, в частности вычисление электрической энергии и мощности с учетом коэффициентов трансформации ТТ и ТН, формирование и хранение поступающей информации, оформление отчетных документов.

Передача информации от сервера в программно-аппаратный комплекс АО «АТС» с электронной цифровой подписью субъекта оптового рынка электроэнергии (ОРЭ), в филиал АО «СО ЕЭС» и в другие смежные субъекты ОРЭ осуществляется по каналу связи с протоколом TCP/IP сети Internet в виде хml-файлов формата 80020 в соответствии с приложением 11.1.1 «Формат и регламент предоставления результатов измерений, состояния средств и объектов измерений в АО «АТС», АО «СО ЕЭС» и смежным субъектам» к Положению о порядке получения статуса субъекта оптового рынка и ведения реестра субъектов оптового рынка электрической энергии и мощности.

Результаты измерений электроэнергии передаются в целых числах кВт·ч и соотнесены с единым календарным временем.

АИИС КУЭ имеет систему обеспечения единого времени (СОЕВ), которая включает в себя часы счетчиков, часы сервера. СОЕВ имеет доступ к серверу синхронизации шкалы времени по протоколу NTP – NTP-серверу ФГУП «ВНИИФТРИ», обеспечивающему передачу точного времени через глобальную сеть Интернет. Синхронизация системного времени NTP-серверов первого уровня осуществляется от сигналов шкалы времени Государственного первичного эталона времени и частоты. Погрешность синхронизации системного времени NTP-серверов первого уровня относительно шкалы времени UTC (SU) не превышает 10 мс.

Сравнение показаний часов сервера с часами NTP-сервера, передача точного времени через глобальную сеть интернет осуществляется с помощью модуля ПО «АльфаЦЕНТР» (АС_Т) с использованием протокола NTP версии 4.0 в соответствии с международным стандартом сетевого взаимодействия RFC-5905. Контроль показаний времени часов сервера осуществляется по запросу каждые 30 мин, коррекция часов осуществляется независимо от величины расхождений.

Сравнение показаний часов счетчиков с часами сервера осуществляется во время сеанса связи со счетчиками (1 раз в 30 мин). Корректировка часов счетчика выполняется автоматически при расхождении с часами сервера на величину ± 2 с, но не чаще одного раза в сутки.

Журналы событий счетчиков и сервера отображают факты коррекции времени с обязательной фиксацией времени до и после коррекции или величины коррекции времени, на которую было скорректировано устройство.

Программное обеспечение

В АИИС КУЭ используется программное обеспечение (ПО) «АльфаЦЕНТР». Уровень защиты ПО от непреднамеренных и преднамеренных изменений предусматривает ведение журналов фиксации ошибок, фиксации изменений параметров, защиты прав пользователей и входа с помощью пароля, защиты передачи данных с помощью контрольных сумм, что соответствует уровню «средний» в соответствии с Р 50.2.077-2014. Метрологически значимая часть ПО указана в таблице 1.

Таблица 1 – Идентификационные данные ПО «АльфаЦЕНТР»

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	ac_metrology.dll
Номер версии (идентификационный номер) ПО	не ниже 15.07
Цифровой идентификатор ПО	3E736B7F380863F44CC8E6F7BD211C54
Алгоритм вычисления цифрового идентификатора ПО	MD5

Метрологические и технические характеристики

Таблица 2 — Состав ИК АИИС КУЭ и их метрологические характеристики

	3 0 0 0 1 W 2		мерительные комп	оненты			Метрологические характеристики ИК		
Но мер ИК	Наименование точки измерений	TT	ТН	Счетчик	Сервер	Вид элек- трической энергии	Границы допускаемой основной относительной погрешности, (±δ) %	Границы допускаемой относительной погрешности в рабочих условиях, $(\pm \delta)$ %	
1	2	3	4	5	6	7	8	9	
1	ПС 110 кВ Мансурово (ПС-70), ввод 6 кВ Т-1	ТПШЛ-10 Кл.т. 0,5 2000/5 Рег. № 1423-60 Фазы: А; С	НОМ-6 Кл.т. 0,5 6000/√3/100/√3 Рег. № 159-49 Фазы: А; С	ПСЧ-4ТМ.05М.01 Кл.т. 0,5S/1,0 Рег. № 36355-07	HP Proliant DL160 Gen8 E5-2603		Активная Реактив- ная	1,3 2,5	3,4 5,9
2	ПС 110 кВ Мансурово (ПС-70), ввод 6 кВ Т-2	ТЛШ-10 Кл.т. 0,5 2000/5 Рег. № 6811-78 Фазы: А; В; С	НОМ-6 Кл.т. 0,5 6000/√3/100/√3 Рег. № 159-49 Фазы: A; С	ПСЧ-4ТМ.05М.01 Кл.т. 0,5S/1,0 Рег. № 36355-07		Активная Реактив- ная	1,3 2,5	3,4 5,9	
3	ПС 110 кВ Мансурово (ПС-70), ввод 6 кВ ТСН-1	ТПЛМ-10 Кл.т. 0,5 100/5 Рег. № 2363-68 Фазы: А; С	1 С.Ш.: НТМИ-6-66 Кл.т. 0,5 6000/100 Рег. № 2611-70 Фазы: ABC	ПСЧ-4ТМ.05М.01 Кл.т. 0,5S/1,0 Рег. № 36355-07		Активная Реактив- ная	1,3 2,5	3,4 5,9	
4	ПС 110 кВ Мансурово (ПС-70), ввод 6 кВ ТСН-2	ТПЛ-10 Кл.т. 0,5 100/5 Рег. № 1276-59 Фазы: А; С	2 С.Ш.: HТМИ-6-66 Кл.т. 0,5 6000/100 Рег. № 2611-70 Фазы: ABC	ПСЧ-4ТМ.05М Кл.т. 0,5S/1,0 Рег. № 36355-07		Активная Реактив- ная	1,3 2,5	3,4 5,9	

Продолжение таблицы 2

про	должение таблиц		Г						
1	2	3	4	5	6	7	8	9	
5	ПС 110 кВ Мансурово (ПС-70), ЗРУ-6 кВ, 1 Сек 6 кВ, яч. 8	ТПЛ-10 Кл.т. 0,5 150/5 Рег. № 1276-59 Фазы: А; С	1 С.Ш.: HТМИ-6-66 Кл.т. 0,5 6000/100 Рег. № 2611-70 Фазы: ABC	ПСЧ-4ТМ.05М.01 Кл.т. 0,5S/1,0 Рег. № 36355-07	· ·		Активная Реактив- ная	1,3 2,5	3,4 5,9
6	ПС 110 кВ Мансурово (ПС-70), ЗРУ-6 кВ, 1 Сек 6 кВ, яч. 13	ТПЛ-10 Кл.т. 0,5 150/5 Рег. № 1276-59 Фазы: А; С	1 С.Ш.: HТМИ-6-66 Кл.т. 0,5 6000/100 Рег. № 2611-70 Фазы: ABC	ПСЧ-4ТМ.05М.01 Кл.т. 0,5S/1,0 Рег. № 36355-07		Активная Реактив- ная	1,3 2,5	3,4 5,9	
7	ПС 110 кВ Мансурово (ПС-70), ЗРУ-6 кВ, 2 Сек 6 кВ, яч. 29	ТПЛ-10 Кл.т. 0,5 150/5 Рег. № 1276-59 Фазы: А; С	2 С.Ш.: HТМИ-6-66 Кл.т. 0,5 6000/100 Рег. № 2611-70 Фазы: ABC	ПСЧ-4ТМ.05М.01 Кл.т. 0,5S/1,0 Рег. № 36355-07	HP Proliant DL160 Gen8 E5-2603	Активная Реактив- ная	1,3 2,5	3,4 5,9	
8	ПС 110 кВ Мансурово (ПС-70), ЗРУ-6 кВ, 2 Сек 6 кВ, яч. 36	ТПЛ-10 Кл.т. 0,5 150/5 Рег. № 1276-59 Фазы: А; С	2 С.Ш.: HТМИ-6-66 Кл.т. 0,5 6000/100 Рег. № 2611-70 Фазы: ABC	ПСЧ-4ТМ.05М.01 Кл.т. 0,5S/1,0 Рег. № 36355-07		Активная Реактив- ная	1,3 2,5	3,4 5,9	
9	ПС 110 кВ Мансурово (ПС-70), ЗРУ-6 кВ, 2 Сек 6 кВ, яч. 38	ТПЛ-10У3 Кл.т. 0,5 400/5 Рег. № 1276-59 Фазы: А; С	2 С.Ш.: HТМИ-6-66 Кл.т. 0,5 6000/100 Рег. № 2611-70 Фазы: ABC	ПСЧ-4ТМ.05М.01 Кл.т. 0,5S/1,0 Рег. № 36355-07		Активная Реактив- ная	1,3 2,5	3,4 5,9	

Продолжение таблицы 2

1	2	3	4	5	6	7	8	9
10	ПС 110 кВ МММЗ, ЗРУ- 6кВ, 1 с.ш. 6 кВ, яч. №11 Ф. Щебзавод-1	ТПЛ-10 Кл.т. 0,5 200/5 Рег. № 1276-59 Фазы: А; С	НТМИ-6-66 Кл.т. 0,5 6000/100 Рег. № 2611-70 Фазы: ABC	ПСЧ-4ТМ.05МК.00 Кл.т. 0,5S/1,0 Рег. № 46634-11		Активная Реактив- ная	1,3 2,5	3,3 5,7
11	ПС 110 кВ МММЗ, ЗРУ-6 кВ, 2 с.ш. 6 кВ, яч. №21 Ф. Щебзавод-2	ТОЛ-10-І	НТМИ-6-66 Кл.т. 0,5 6000/100 Рег. № 2611-70 Фазы: ABC	ПСЧ-4ТМ.05МК.00 Кл.т. 0,5S/1,0 Рег. № 46634-11	HP Proliant DL160 Gen8 E5-2603	Активная Реактив- ная	1,3 2,5	3,3 5,7
12	КРУН-6 кВ №2	ТОЛ-10-I Кл.т. 0,5 75/5 Рег. № 47959-11 Фазы: А; С	3НОЛ.06 Кл.т. 0,5 6000/√3/100/√3 Рег. № 3344-08 Фазы: A; B; C	ПСЧ-4ТМ.05МК.00 Кл.т. 0,5S/1,0 Рег. № 46634-11		Активная Реактив- ная	1,3 2,5	3,4 5,9

Примечания:

1 В качестве характеристик погрешности ИК установлены границы допускаемой относительной погрешности ИК при доверительной вероятности, равной 0,95.

- 2 Характеристики погрешности ИК указаны для измерений активной и реактивной электроэнергии на интервале времени 30 мин.
- 3 Погрешность в рабочих условиях указана для тока 5 % от $I_{\text{ном}}$; $\cos i = 0.8$ инд.
- 4 Допускается замена ТТ, ТН и счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в таблице 2, при условии, что предприятие-владелец АИИС КУЭ не претендует на улучшение указанных в таблице 2 метрологических характеристик. Допускается замена сервера без изменения используемого ПО (при условии сохранения цифрового идентификатора ПО). Замена оформляется актом в установленном собственником АИИС КУЭ порядке. Акт хранится совместно с настоящим описанием типа АИИС КУЭ как его неотъемлемая часть.

Таблица 3 – Основные технические характеристики ИК

Наименование характеристики	Значение
Количество ИК	12
Нормальные условия:	
параметры сети:	
напряжение, % от Ином	от 95 до 105
ток, % от Іном	от 5 до 120
коэффициент мощности соѕф	0,9
частота, Гц	от 49,8 до 50,2
температура окружающей среды, °С	от +15 до +25
Условия эксплуатации:	
параметры сети:	
напряжение, % от Ином	от 90 до 110
ток, % от Іном	от 5 до 120
коэффициент мощности соѕф	от 0,5 до 1,0
частота, Гц	от 49,6 до 50,4
температура окружающей среды для ТТ и ТН, °С	от -45 до +40
температура окружающей среды в месте расположения счетчиков	
для ИК №№ 1-9, 12, °C	от -10 до +40
для ИК №№ 10, 11, °C	от +10 до +40
температура окружающей среды в месте расположения сервера, °С	от +10 до +25
Надежность применяемых в АИИС КУЭ компонентов: для счетчиков типа ПСЧ-4ТМ.05М:	
среднее время наработки на отказ, ч, не менее	140000
среднее время восстановления работоспособности, ч	2
для счетчиков типа ПСЧ-4ТМ.05МК:	
среднее время наработки на отказ, ч, не менее	165000
среднее время восстановления работоспособности, ч	2
для сервера:	
среднее время наработки на отказ, ч, не менее	70000
среднее время восстановления работоспособности, ч	1
Глубина хранения информации:	
для счетчиков:	
тридцатиминутный профиль нагрузки в двух направлениях,	
сут, не менее	113
при отключении питания, лет, не менее	10
для сервера:	
хранение результатов измерений и информации состояний	2.7
средств измерений, лет, не менее	3,5

Надежность системных решений:

защита от кратковременных сбоев питания сервера с помощью источника бесперебойного питания;

резервирование каналов связи: информация о результатах измерений может передаваться в организации-участники оптового рынка электроэнергии по электронной почте.

В журналах событий фиксируются факты:

- журнал счетчика: параметрирования; пропадания напряжения; коррекции времени в счетчике.
- журнал сервера: параметрирования; пропадания напряжения; коррекции времени в счетчике и сервере;

пропадание и восстановление связи со счетчиком.

Защищенность применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование: счетчика электрической энергии;

промежуточных клеммников вторичных цепей напряжения;

испытательной коробки;

сервера.

- защита на программном уровне информации при хранении, передаче, параметрировании:

счетчика электрической энергии;

сервера.

Возможность коррекции времени в:

счетчиках электрической энергии (функция автоматизирована);

сервере (функция автоматизирована).

Возможность сбора информации:

о состоянии средств измерений;

о результатах измерений (функция автоматизирована).

Цикличность:

измерений 30 мин (функция автоматизирована);

сбора не реже одного раза в сутки (функция автоматизирована).

Знак утверждения типа

наносится на титульные листы эксплуатационной документации на АИИС КУЭ типографским способом.

Комплектность средства измерений

В комплект поставки входит техническая документация на АИИС КУЭ и на комплектующие средства измерений.

Комплектность АИИС КУЭ представлена в таблице 4.

Таблица 4 — Комплектность АИИС КУЭ

Таблица 4 — Комплектность АИИС КУЭ		1	
Наименование	Обозначение	Количество,	
Паименование	Ооозначение	шт./экз.	
Трансформаторы тока	ТПШЛ-10	2	
Трансформаторы тока	ТЛШ-10	3	
Трансформаторы тока	ТПЛМ-10	2	
Трансформаторы тока проходные с литой изоляцией	ТПЛ-10	12	
Трансформаторы тока проходные с литой изоляцией	ТПЛ-10У3	2	
Трансформаторы тока	ТОЛ-10-І	2	
Трансформаторы тока опорные	ТОЛ-10-І	2	
Трансформаторы напряжения	HOM-6	4	
Трансформаторы напряжения	НТМИ-6-66	4	
Трансформаторы напряжения	3НОЛ.06	3	
Счетчики электрической энергии многофункциональные	ПСЧ-4ТМ.05М	9	
Счетчики электрической энергии многофункциональные	ПСЧ-4ТМ.05МК	3	
Connon	HP Proliant DL160 Gen8	1	
Сервер	E5-2603	1	
Методика поверки	МП ЭПР-163-2019	1	
Формуляр	ЭНПР.411711.016.ФО	1	

Поверка

осуществляется по документу МП ЭПР-163-2019 «Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «СДК», ООО «БЩЗ». Методика поверки», утвержденному ООО «ЭнергоПромРесурс» 23.04.2019 г.

Основные средства поверки:

- средства поверки в соответствии с нормативными документами на средства измерений, входящие в состав АИИС КУЭ;
- радиочасы МИР РЧ-02, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS) (регистрационный номер в Федеральном информационном фонде 46656-11);
- термогигрометр CENTER (мод.315) (регистрационный номер в Федеральном информационном фонде 22129-09);
- барометр-анероид метеорологический БАММ-1 (регистрационный номер в Федеральном информационном фонде 5738-76);
- термометр стеклянный жидкостный вибростойкий авиационный ТП-6 (регистрационный номер в Федеральном информационном фонде 257-49);
- миллитесламетр портативный универсальный ТПУ (регистрационный номер в Федеральном информационном фонде 28134-04);
- анализатор количества и показателей качества электрической энергии AR.5L (регистрационный номер в Федеральном информационном фонде 44131-10);
- вольтамперфазометр ПАРМА ВАФ®-А (регистрационный номер в Федеральном информационном фонде 22029-10).

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке АИИС КУЭ.

Сведения о методиках (методах) измерений

приведены в документе «Методика измерений электрической энергии с использованием АИИС КУЭ ООО «СДК», ООО «БЩЗ», свидетельство об аттестации № 186/RA.RU.312078/2019.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ООО «СДК», ООО «БЩЗ»

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения

Изготовитель

Общество с ограниченной ответственностью «ЭнергоПромРесурс» (ООО «ЭнергоПромРесурс»)

ИНН 5024145974

Адрес: 143443, Московская обл., г. Красногорск, мкр. Опалиха, ул. Ново-Никольская, д. 57, офис 19

Телефон: (495) 380-37-61

E-mail: energopromresurs2016@gmail.com

TT U	
Испытательный	HEHTN
richbii ai wibiibiii	центр

Общество с ограниченной ответственностью «ЭнергоПромРесурс» (ООО «ЭнергоПромРесурс»)

Адрес: 143443, Московская обл., г. Красногорск, мкр. Опалиха, ул. Ново-Никольская, д. 57, офис 19

Телефон: (495) 380-37-61

E-mail: energopromresurs2016@gmail.com

Аттестат аккредитации ООО «ЭнергоПромРесурс» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.312047 от 26.01.2017 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

А.В. Кулешов

М.п. «___ » _____ 2019 г.