ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Дальномеры лазерные GLM 500

Назначение средства измерений

Дальномеры лазерные GLM 500 (далее - дальномеры) предназначены для измерений расстояний и угла наклона.

Описание средства измерений

Принцип измерения расстояний дальномеров основан на определении разности фаз, излучаемых и принимаемых модулированных сигналов. Модулируемое излучение лазера с помощью оптической системы направляется на цель. Отраженное целью излучение принимается той же оптической системой, усиливается и направляется на блок, где происходит измерение разности фаз, излучаемых и принимаемых сигналов, на основании, которого вычисляется расстояния до цели.

Принцип измерения угла наклона относительно горизонта основан на применении сенсора «МЕМЅ» (Микро Электро Механическая Система). Он представляет собой конденсатор, сигнал с сенсора преобразовывается и выдается на дисплей в виде угла наклона, в установленных единицах измерения.

Конструктивно дальномеры выполнены единым блоком, в котором размещены оптические и электронные компоненты. Управление дальномерами осуществляется при помощи функциональной клавиши.

Нулевой (начальной) точкой отсчёта дальномеров может быть:

- нижний торец корпуса;
- верхний торец корпуса;
- центр резьбовой втулки при измерении со штатива.

Результаты измерений выводятся на дисплее, регистрируются во внутренней памяти.

Общий вид дальномеров представлен на рисунке 1

Рисунок 1 - Общий вид дальномеров лазерных GLM 500

Опломбирование узлов дальномеров лазерных GLM 500 не производится, ограничение доступа к узлам обеспечено конструкцией крепёжных винтов, которые могут быть сняты только при наличии специальных ключей.

Программное обеспечение

Дальномеры имеют встроенное программное обеспечение (далее – ВПО), которое устанавливается в энергонезависимую память дальномеров при их производстве. Изменение ВПО не предусмотрено.

Уровень защиты ВПО «высокий» в соответствии с Р 50.2.077–2014. Конструкция дальномеров исключает возможность несанкционированного влияния на ВПО и измерительную информацию.

Идентификационные данные ВПО приведены в таблице 1

Таблица 1 - Идентификационные данные программного обеспечения

Идентификационное наименование ПО	ВПО	
Номер версии (идентификационный номер ПО), не ниже	-	
Цифровой идентификатор ПО	-	

Метрологические и технические характеристики

Таблица 2 – Метрологические характеристики

таолица 2 – метрологические характеристики		
Наименование характеристики	Значение	
Диапазон измерений:		
- расстояний, м:		
- при благоприятных условиях ¹⁾	от 0,05 до 50,00	
- при неблагоприятных условиях ²⁾	от 0,05 до 20,00	
- угла наклона, °	от 0 до 180	
Границы допускаемой абсолютной		
погрешности измерений расстояний (при		
доверительной вероятности 0,95), мм:		
- при благоприятных условиях ¹⁾	$\pm 2 \cdot (1,50+0,05\cdot 10^{-3}\cdot D)$	
- при неблагоприятных условиях ²⁾	$\pm 2 \cdot (3,00+0,15\cdot 10^{-3}\cdot D),$	
	где D - измеряемое расстояние, мм	
Допускаемая средняя квадратическая		
погрешность измерений расстояний, мм:		
- при благоприятных условиях ¹⁾	$1,50+0,05\cdot 10^{-3}\cdot D$	
- при неблагоприятных условиях ²⁾	$3,00+0,15\cdot 10^{-3}\cdot D,$	
	где D - измеряемое расстояние, мм	
Пределы допускаемой абсолютной		
погрешности измерений угла наклона, °	$\pm (0.20+0.01\cdot\alpha)^{3}/\pm (0.30+0.01\cdot\alpha)^{4},$	
	где α – измеряемый угол в градусах	
Дискретность измерений:		
- расстояний, мм	0,5	
- угла наклона, °	0,1	

 $^{^{1)}}$ - измерения на поверхность со 100~% отражательной способностью (стена, окрашенная в белый цвет), низкая фоновая освещенность, температура окружающей среды $+25~^{\circ}\mathrm{C}$

 $^{^{2)}}$ - измерения на поверхность с (10-100) % отражательной способностью, высокая фоновая освещённость (яркое солнце), температура окружающей среды от -10 до +45 °C

^{3) –} при температуре окружающей среды +25 °C

 $^{^{4)}}$ – для всего диапазона рабочих температур, исключая $+25~^{\circ}\mathrm{C}$

Таблица 3 – Основные технические характеристики

Наименование характеристики	Значение	
Лазерное излучение:		
- мощность, мВт, не более	1	
- длина волны, нм	905	
- класс по ГОСТ 31581-2012	1	
Диаметр лазерной точки ¹⁾ , мм, не более:		
- на расстоянии 10 м	9	
- на расстоянии 50 м	45	
Источник электропитания постоянного тока	2 аккумуляторные батареи типа ААА	
Напряжение питания постоянного тока, В	3	
Диапазон рабочих температур, °С	от -10 до +45	
Габаритные размеры (Д×Ш×В) мм, не более	106×45×24	
Масса, кг, не более	0,1	

Знак утверждения типа

наносится типографским способом на титульный лист руководства по эксплуатации и наклейкой на корпус дальномеров.

Комплектность средства измерений

Таблица 4 - Комплектность средства измерений

Наименование	Обозначение	Количество
Дальномер лазерный GLM 500	-	1
Аккумуляторные батареи типа ААА	-	2
Чехол	-	1
Руководство по эксплуатации на русском языке	-	1
Методика поверки	МП АПМ 105-18	1

Поверка

осуществляется по документу МП АПМ 105-18 «Дальномеры лазерные GLM 500. Методика поверки», утверждённому ООО «Автопрогресс-М» «19» декабря 2018 г.

Основные средства поверки:

- рабочий эталон 3-го разряда по Государственной поверочной схеме для средств измерений длины в диапазоне от 1·10-9до 100 м и длин волн в диапазоне от 0,2 до 50 мкм утвержденной приказом Федерального агентства по техническому регулированию и метрологии от 29 декабря 2018 г. № 2840 лента измерительная;
- рабочий эталон 2-го разряда по Государственной поверочной схеме для координатновременных средств измерений утвержденной приказом Федерального агентства по техническому регулированию и метрологии от 29 декабря 2018 г. № 2831 фазовый светодальномер (электронный тахеометр);
 - головка делительная оптическая ОДГЭ-5 (рег. № 26906-04).

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик, поверяемых СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к дальномерам лазерным GLM 500

Государственная поверочная схема для координатно-временных средств измерений утвержденной приказом Федерального агентства по техническому регулированию и метрологии от 29 декабря 2018 г. № 2831

Техническая документация «Robert Bosch Power Tools GmbH», Германия

Изготовитель

«Robert Bosch Power Tools GmbH», Германия

Адрес: Max-Lang-Strasse 40-46, D-70764 Leinfelden-Echterdingen, Germany

Тел.: +49 (0)711 400 40990, факс: +49 (0)711 400 40999

E-mail: info@bosch.com

Заявитель

Общество с ограниченной ответственностью «Роберт Бош»

(ООО «Роберт Бош»), г. Химки Московской области, ИНН 7706092944

Адрес: 141400, Московская область, г. Химки, Вашутинское шоссе, владение 24

Тел./факс: +7 (495) 560-95-60 E-mail: info@ru.bosch.com

Испытательный центр

Общество с ограниченной ответственностью «Автопрогресс-М» (ООО «Автопрогресс-М»)

Адрес: 125167, г. Москва, ул. Викторенко, д. 16, стр. 1 Тел.: +7 (495) 120-0350, факс: +7 (495) 120-0350 доб. 0

E-mail: info@autoprogress-m.ru

Аттестат аккредитации ООО «Автопрогресс-М» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.311195 от 30.06.2015 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

C.C.	OJI '	V O O D

М.п. «____» ____ 2019 г.