ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Датчики измерения радиации ДИР

Назначение средства измерений

Датчики измерения радиации ДИР (далее – ДИР) предназначены для измерений поглощенной дозы фотонного излучения в кремнии.

Описание средства измерений

Принцип действия ДИР основан на измерении поглощенной дозы фотонного излучения чувствительным элементом, в качестве которого применяется полевой транзистор. Изменения поглощенной дозы фотонного излучения в кремнии пропорциональны изменению значения электрического сопротивления чувствительного элемента.

Конструктивно ДИР состоят из:

- датчиков ДИР;
- платы управления ДИР ЮМП.250.210.041.3.

Датчики ДИР состоят из чувствительного элемента, который установлен на текстолитовую печатную плату ЮМП.250.210.043 и помещен в стальной корпус. На передней торцевой части датчиков ДИР установлен соединитель «X821-N», где N порядковый номер датчика ДИР в комплекте поставки. На верхней части датчика ДИР указывается его нумерация по форме «ДИР-N» и децимальный номер изделия.

Конструктив платы управления ДИР предусматривает её эксплуатацию в корпусе со встроенным источником питания. Внутри корпуса соединитель платы управления ДИР PLD-40R соединяется с установленными на лицевой панели корпуса соединителем Ш1 для подключения устройства приема-передачи данных и с соединителями СН1-СН4 для связи с датчиками ДИР. Одновременно к плате управления ДИР могут быть подключены четыре датчика ДИР. На задней стороне корпуса расположен соединитель Ш2 для подключения к сети питания 220 В.

Значения поглощенной дозы в кремнии пропорциональны падению напряжения на полевом транзисторе при протекании через него тока $I=210\,\mathrm{mkA}$. Регистрация падения напряжения осуществляется усилительным каскадом платы управления ДИР. Полученный сигнал оцифровывается АЦП и обрабатывается с помощью микроконтроллера. Через интерфейс МКО (ГОСТ Р 52070-2003) ДИР выдает значение напряжения, соответствующее текущей поглощённой дозе фотонного излучения в чувствительном элементе, которое может быть использовано без дополнительных преобразований.

Общий вид датчиков ДИР с указанием места пломбирования представлен на рисунке 1.

Рисунок 1 - Общий вид датчиков ДИР

Общий вид платы управления ДИР представлен на рисунке 2. Пломбировка платы управления ДИР не предусмотрена.

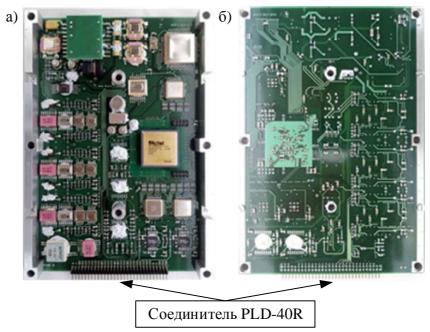


Рисунок 2 - Общий вид платы управления ДИР, а) – вид сверху, б) – вид снизу.

Общий вид корпуса платы управления ДИР с указанием места пломбирования представлен на рисунке 3.

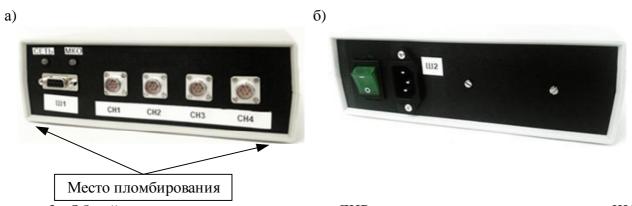


Рисунок 3 - Общий вид корпуса платы управления ДИР с установленными соединителями Ш1, Ш2 и СН1-СН4, а) – вид спереди, б) – вид сзади.

Программное обеспечение

В качестве программного обеспечения (далее – ΠO), устанавливаемого на персональный компьютер (ΠK), используется программа «ДИР клиент».

ПО «ДИР клиент» автоматически проверяет наличие соединения между ПК и платой управления ДИР, осуществляет процессы установления количества датчиков ДИР участвующих в измерениях, периодичность опроса данных, их передачу и контроль стыковки платы управления с ПК. ПО позволяет в реальном времени следить за показаниями выбранных датчиков ДИР, сохранять их в табличном виде и отображать в виде графиков.

Уровень защиты ПО «средний» в соответствии с Р 50.2.077-2014.

Таблица 1 – Идентификационные данные ПО

	-	
Идентификационные данные (признаки)	Значение	
Идентификационное наименование ПО	ДИР клиент	
Номер версии (идентификационный		
номер) ПО	1.X*	
Цифровой идентификатор ПО	91e37e3279c3d3552a6e2ddda868238ab079551f	
Алгоритм вычисления идентификатора ПО	SHA1	

^{*} X от 1 до 99. Актуальный номер версии ПО вносятся в формуляр при выпуске из производства. Цифровой идентификатор указан для версии 1.1

Метрологические и технические характеристики

Таблица 2 - Метрологические характеристики

Наименование характеристики	Значение
Диапазон измерений поглощенной дозы в кремнии гамма-	от 0,5 до 1,2·10 ³
излучения радионуклида 60 Со, Гр (рад)	(от 50 до $1,2 \cdot 10^5$)
Пределы допускаемой относительной погрешности измерений	
поглощенной дозы в кремнии гамма-излучения радионуклида	
⁶⁰ Co, %	20

Таблица 3 - Основные технические характеристики

Наименование характеристики	Значение
Рабочие условия эксплуатации:	
- диапазон температур окружающего воздуха, °С	от +15 до +35
- относительная влажность воздуха, %	от 45 до 80
- атмосферное давление, кПа	от 84,0 до 106,7
Напряжение питание, В	от 23 до 28
Потребляемая мощность, Вт, не более	3
Габаритные размеры, мм, не более:	
- датчик ДИР:	
длина	32,5
ширина	41
высота	21,5
- плата управления ДИР:	
длина	160
ширина	110
высота	20
Масса, кг, не более	
- датчик ДИР	0,088
- плата управления ДИР	0,24
Время установления рабочего режима, с, не более	60
Средняя наработка на отказ, часов	140 000
Срок службы, лет, не менее	15

Знак утверждения типа

наносится на титульный лист руководства по эксплуатации ДИР ЮМП.250.210.003 РЭ типографским способом.

Комплектность средства измерений

Таблица 4 – Комплектность средства измерений ДИР ЮМП.250.210.003

Наименование	Обозначение	Количество
Датчики ДИР	ЮМП.250.210.043	1-4 ¹⁾ шт.
Плата управления ДИР в		
корпусе	ЮМП.250.210.041.3	1 шт.
Преобразователь		
интерфейсов ³⁾	TA1-USB-01-C	1 шт.
Персональный компьютер с		
предустановленным ПО 1) 3)	-	1 ²⁾ шт.
Кабель питания 3)	ЮМП.250.210.003.01	2 шт.
Интерфейсный кабель 3)	ЮМП.250.210.003.02	1 шт.
Кабель USB 2.0 типа		
A (розетка) – B (розетка) $^{3)}$	ЮМП.250.210.003.04	1 шт.
Сигнальный кабель	ЮМП.250.210.003.03	1 шт.
Руководство по		
эксплуатации	ЮМП.250.210.003 РЭ	1 экз.
Формуляр	ЮМП.250.210.003 ФО	1 экз.
Методика поверки	ЮМП.250.210.003 МП	1 экз.

¹⁾ Количество датчиков ДИР в комплекте поставки определяется заказчиком;

Поверка

осуществляется по документу ЮМП.250.210.003 МП «Датчики измерения радиации ДИР. Методика поверки», утвержденному ФГУП «ВНИИФТРИ» 30.01.2019 г.

Основные средства поверки:

- рабочий эталон 2-го разряда по ГОСТ 8.070-2014 Диапазон измерений МПД от $5 \cdot 10^{-4}$ до $1 \cdot 10^{-1}$ Гр/с. Пределы допускаемой относительной погрешности ± 6 %.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых датчиков ДИР с требуемой точностью.

Знак поверки наносится на свидетельство о поверке в виде наклейки или оттиска поверительного клейма.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные документы, устанавливающие требования к датчикам измерения радиации ЛИР

ГОСТ 8.070-2014 Государственная поверочная схема для средств измерений поглощенной и эквивалентной доз и мощности поглощенной и эквивалентной доз фотонного и электронного излучений

ГОСТ 27451-87 Средства измерений ионизирующих излучений. Общие технические условия

ЮМП.250.220.003 ТУ Датчик измерения радиации ДИР. Технические условия

 $^{^{2)}}$ Системные требования не хуже: процессор Intel Core I5, ОЗУ 4,0 ГБ, версия ОС «Windows» не ниже 7-й версии.

³⁾ Поставляется опционально, по требованию заказчика.

Изготовитель

Федеральное государственное автономное образовательное учреждение высшего образования «Новосибирский национальный исследовательский государственный университет» (Новосибирский государственный университет, НГУ)

ИНН 5408106490

Юридический адрес: 630090, г. Новосибирск, ул. Пирогова, д. 1

Адрес: 630090, г. Новосибирск, ул. Пирогова, д. 2

Телефон: +7 (383) 363-42-58 E-mail: uprok@phys.nsu.ru

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт физико-технических и радиотехнических измерений»

Адрес: 141570, Московская область, Солнечногорский район, г. Солнечногорск, рабочий поселок Менделеево, промзона ФГУП «ВНИИФТРИ», корпус 11

Телефон (факс): +7 (495) 526-63-00

Web-сайт: <u>www.vniiftri.ru</u> E-mail: <u>office@vniiftri.ru</u>

Аттестат аккредитации Φ ГУП «ВНИИ Φ ТРИ» по испытанию средств измерений в целях утверждения типа № 30002-13 от 11.05.2018 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

А.В. Кулешов

М.п. «____»____2019 г.