ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная АИИС-37-04

Назначение средства измерений

Система автоматизированная информационно-измерительная АИИС-37-04 (далее по тексту – ИС) предназначена для измерений и контроля параметров компрессоров, узлов авиационных двигателей и стендовых систем: виброускорения (виброскорости), давления газа (воздуха) и жидкостей, массового расхода топлива, напряжения и силы постоянного тока, относительной влажности воздуха, силы от тяги двигателей, температуры, частоты вращения.

Описание средства измерений

Принцип действия ИС основан на преобразовании измеряемых параметров датчиками в соответствующие электрические сигналы, последующем аналого-цифровом преобразовании электрических сигналов в цифровой код и передаче измерительной информации в персональный компьютер для дальнейшей визуализации, оценки и хранения.

ИС имеет модульную конструкцию и представляет собой информационноизмерительную систему с централизованным управлением и распределенной функцией измерений.

ИС состоит из восьми модулей, включающих в себя соответствующие измерительные каналы (ИК):

- модуль измерений динамических параметров (МИДП);
- модуль измерений выходных электрических сигналов датчиков двигателей и каналов телеметрии (МИВС);
 - модуль измерений температуры (МИТ);
 - модуль измерений параметров окружающей среды (МИПОС);
 - модуль измерений давления (МИД);
 - модуль измерений массового расхода топлива (МИРТ);
 - модуль измерений силы от тяги двигателя (МИС);
 - модуль измерений частоты вращения ротора (МИЧВР).

Часть ИК не содержит датчиков (первичных преобразователей), которые поставляются в составе испытываемого изделия и подсоединяются к ИС только на период испытаний (МИВС и МИЧВР).

ИК МИДП состоит из следующих элементов:

- вибропреобразователь АВС136 (рег. №10533-86);
- модуль MC-201+MP-07 комплекса измерительно-вычислительного MIC-036R (рег. №20859-09);
 - персональный компьютер.

ИК МИВС состоят из следующих элементов:

- модули MC-227C2, MC-227K1, MC-227U1, MC-227U2 комплекса измерительновычислительного MIC-036R (рег. №20859-09);
 - персональный компьютер.

ИК МИТ состоят из следующих элементов:

- термометры сопротивления ТСП 9203 (рег. №14238-94);
- термометр сопротивления платиновый П по ГОСТ 6651-2009;
- термопары с HCX TXA(K), TXK(L) по ГОСТ P 8.585-2001;
- модуль MC-227R3 комплекса измерительно-вычислительного MIC-036R (рег. №20859-09);
 - комплекс измерительный магистрально-модульный MIC-140/96 (рег. №46517-11);
 - персональный компьютер.

ИК МИПОС состоят из следующих элементов:

- преобразователь измерительный температуры и влажности ИПТВ-206/М3-03 (рег. №16447-08);
 - преобразователь давления измерительный RPT 410 (рег. №40258-08);
- модули MC-227C2, MC-451+ME-401 комплекса измерительно-вычислительного MIC-036R (рег. №20859-09);
 - персональный компьютер.

ИК МИД состоят из следующих элементов:

- датчики давления Метран-100 (рег. №22235-08);
- датчики давления Метран-55 (рег. №18375-08);
- преобразователи давления измерительные DMP 331, DMP 333 (рег. №56795-14);
- модуль MC-227C2 комплекса измерительно-вычислительного MIC-036R (рег. №20859-09);
 - персональный компьютер.

ИК МИРТ состоит из следующих элементов:

- расходомер массовый Promass 83F (рег. №15201-07);
- модуль MC-227C2 комплекса измерительно-вычислительного MIC-036R (рег. №20859-09);
 - персональный компьютер.

ИК МИС состоят из следующих элементов:

- датчик силоизмерительный тензорезисторный C2 (рег. №19759-05);
- преобразователь весоизмерительный ТВ-003/05Д (рег. №37794-08)
- динамометрическая платформа, установленная на упругих лентах сжатия, работающих при незапущенном двигателе на сжатие;
 - стендовое градуировочное устройство;
- модуль MC-227C2 комплекса измерительно-вычислительного MIC-036R (рег. №20859-09);
 - персональный компьютер.

ИК МИЧВР состоит из следующих элементов:

- модуль MC-451+ME-401 комплекса измерительно-вычислительного MIC-036R (рег. №20859-09);
 - персональный компьютер.


Полный перечень и состав ИК ИС представлен в таблице 2.

Общий вид автоматизированного рабочего места оператора, место нанесения знака утверждения типа представлены на рисунке 1.

Общий вид приборной стойки представлен на рисунке 2.

Защита от несанкционированного доступа к компонентам ИС обеспечивается:

- пломбировкой MIC-036R (схема пломбировки представлена на рисунке 3);
- пломбировкой МІС-140/96 (схема пломбировки представлена на рисунке 4).

Место нанесения знака утверждения типа в виде наклейки

Рисунок 1 — Общий вид автоматизированного рабочего места оператора

Рисунок 2 – Общий вид приборной стойки

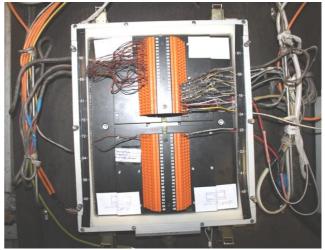


Рисунок 3 – Схема пломбировки от несанкционированного доступа MIC-036R

Рисунок 4 – Схема пломбировки от несанкционированного доступа MIC-140/96

Программное обеспечение

Программное обеспечение ИС состоит из общего и функционального программного обеспечения (далее по тексту – ΠO).

Общее ПО представлено операционной системой Windows 7 «Pro» (64-разрядная).

Функциональное ПО представлено программой управления комплексами MIC «Recorder», которая обеспечивает выполнение следующих функций:

- сбор и обработка данных результатов измерений параметров компрессоров;
- сбор и обработка данных состояния технологических устройств;
- визуализация и оценка полученной измерительной информации;
- мониторинг управления испытанием;
- технологическая блокировка и защита;
- логическое управление;
- хранение результатов измерений.

Метрологически значимой частью функционального ПО «Recorder» является метрологический модуль scales.dll.

Влияние ПО учтено при нормировании метрологических характеристик ИС.

Уровень защиты программного обеспечения и измерительной информации в соответствии с Р 50.2.077-2014 – «средний».

Таблица 1 – Идентификационные данные ПО

Идентификационные данные (признаки)	Значение			
Идентификационное наименование ПО	scales.dll			
Номер версии (идентификационный номер ПО)	не ниже 1.0.0.8			
Цифровой идентификатор ПО	24CBC163*			
Алгоритм вычисления цифрового идентификатора ПО CRC32				
Примечание – В случае обновления операционной системы или версии функционального				

Примечание – В случае обновления операционной системы или версии функционального ПО, цифровой идентификатор уточняется, действительное значение записывается в формуляр.

Метрологические и технические характеристики

Таблица 2 – Метрологические характеристики и состав ИК

№	Сост	ав ИК	Наименование измеряемого параметра	Диапазон измерений	Диапазон показаний	погрег измерег доверит вероят	интервалов иности ний при гельной гности 0,95 дополни-
	ПП, МХ	Модуль МІС, МХ				ной	тельной
1	2	3	4	5	6	7	8
1	ABC034-02: от 0 до 50 мм/с δ: ±10 %	MC-201+MP-07: δ: ±2,0 %	Вибрация двигателя	от 0,1 до 500 м/c ²	от 0 до 50 мм/с	δ: ±12 %	δ: ±2 %
2	-	MC-227U1: от 0 до 10 B; γ(ДИ): ±0,08 %	Выходное напряжение датчика частоты вращения	от 0 до 6,5 В	от 0 до 100 %	γ(ВПИ): ±0,15	γ(ВПИ): ±0,20
3	-	MC-227U1: от 0 до 10 B; γ(ДИ): ±0,08 %	Выходное напряжение датчика давления воздуха за КВД	от 0 до 6,5 В	от 0 до 100 %	γ(ВПИ): ±0,15	γ(ВПИ): ±0,20
4	-	MC-227U1: от 0 до 10 В; γ(ДИ): ±0,08 %	Выходное напряжение канала телеметрии температуры выходящих газов	от 0 до 6,5 В	от 0 до 6,5 В	γ(ВПИ): ±0,15	γ(ВПИ): ±0,20
5	-	MC-227U1: от 0 до 10 B; γ(ДИ): ±0,08 %	Выходное напряжение канала телеметрии положения дозатора	от 0 до 6,5 В	от 0 до 100 %	γ(ВПИ): ±0,15	γ(ВПИ): ±0,20
6	-	MC-227U1: от 0 до 10 В; γ(ДИ): ±0,08 %	Выходное напряжение канала телеметрии температуры воздуха за КНД	от 0 до 6,5 В	от 0 до 6,5 В	γ(ВПИ): ±0,15	γ(ВПИ): ±0,20
7	-	MC-227U1: от 0 до 10 В; γ(ДИ): ±0,08 %	Напряжение управляющего сигнала	от 0 до 6,5 В	от 0 до 100 %	γ(ВПИ): ±0,15	γ(ВПИ): ±0,20

1 1	2	3	4	5	6	7	8
1	<u> </u>	-	4	3	0	/	8
		MC-227U1:	Выходное напряжение датчика	от 0 до 6,5	от 0 до 100	ү(ВПИ):	ү(ВПИ):
8	-	от 0 до 10 В;	импульсов	В	%	±0,15	±0,20
		γ(ДИ): ±0,08 %					,
0.40		MC-227U1:	Выходное напряжение	от 0 до 6,5	от 0 до 6,5	ү(ВПИ):	ү(ВПИ):
9-12	-	от 0 до 10 В;	дискретных команд запуска	В	В	±0,15	±0,20
		ү(ДИ): ±0,08 %	КРД		_		,
		MC-227U1:	Выходное напряжение	от 0 до 10	от 0 до 10	ү(ВПИ):	ү(ВПИ):
13	-	от 0 до 10 В;	положения иглы дозатора	В	В	± 0.10	± 0.15
		ү(ДИ): ±0,08 %	положения иглы дозитори	B		_0,10	=0,15
		MC-227U1:	Напряжение управляющего	от 0 до 10	от 0 до 10	ү(ВПИ):	ү(ВПИ):
14	-	от 0 до 10 В;	сигнала	В	В	± 0.10	± 0.15
		ү(ДИ): ±0,08 %	CHI Hasia		Б	20,10	±0,13
		MC-227U1:	Напряжение сигналов 1	от 0 до 6,5	от 0 до 6,5	ү(ВПИ):	ү(ВПИ):
15	-	от 0 до 10 В;	группы	В	В	± 0.15	± 0.20
		ү(ДИ): ±0,08 %	Труппы		Б	±0,13	±0,20
		MC-227U1:	Напряжение сигналов 2	от 0 до 6,5	от 0 до 6,5	ү(ВПИ):	ү(ВПИ):
16	-	от 0 до 10 В;	группы	В	В	± 0.15	±0,20
		ү(ДИ): ±0,08 %	труппы		D		
		MC-227U1:	Выходное напряжение 1	от 0 до 10	от 0 до 10	ү(ВПИ):	ү(ВПИ):
17	-	от 0 до 10 В;	канала телеметрии БВПР	В	В	± 0.10	±0,15
		ү(ДИ): ±0,08 %	канала телеметрии ввти	D	Б	±0,10	$\pm 0,13$
		MC-227U1:	Выходное напряжение 2	от 0 до 10	от 0 до 10	γ(ВПИ):	ү(ВПИ):
18	-	от 0 до 10 В;	канала телеметрии БВПР	В	В	± 0.10	±0,15
		ү(ДИ): ±0,08 %	канала телеметрии ввтт	D	Б	± 0.10	± 0.13
		MC-227U1:	Поличения ЕП отоку ста	om 0 vo 6 5	om 0 vo 6 5	м(ВПИ):	м(ВПИ):
19	-	от 0 до 10 В;	Напряжение БП стендовый +6 В БВПР	от 0 до 6,5	от 0 до 6,5	γ(ВПИ):	γ(ВПИ):
		ү(ДИ): ±0,08 %	+0 D DBH	В	В	$\pm 0,15$	±0,20
		MC-227U2:	Hawa awayyya 1	a= 0 =a 25	a= 0 =a 2F	м/ВПИ	м/ВПИ
20	-	от 0 до 100 В;	Напряжение 1	от 0 до 35	от 0 до 35	γ(ВПИ):	γ(ВПИ):
		ү(ДИ): ±0,08 %	к БВПР +27 В	В	В	$\pm 0,25$	$\pm 0,30$

1	2	3	4	5	6	7	8
21	-	MC-227U2: от 0 до 100 B; γ(ДИ): ±0,08 %	Напряжение 2 к БВПР +27В	от 0 до 35 В	от 0 до 35 В	γ(ВПИ): ±0,25	γ(ВПИ): ±0,30
22	-	MC-227U2: от 0 до 100 В; γ(ДИ): ±0,08 %	Напряжение «Генератор Готов»1	от 0 до 30 В	от 0 до 30 В	γ(ВПИ): ±0,30	γ(ВПИ): ±0,35
23	-	MC-227U2: от 0 до 100 B; γ(ДИ): ±0,08 %	Напряжение «Генератор Готов»2	от 0 до 30 В	от 0 до 30 В	γ(ВПИ): ±0,30	γ(ВПИ): ±0,35
24	-	MC-227U1: от 0 до 10 В; γ(ДИ): ±0,08 %	Температура воздуха на входе КВД	от 0 до 6,5 В	от 200 до 500 К	γ(ВПИ): ±0,15	γ(ВПИ): ±0,20
25	-	MC-227K1: от -10 до +68 мВ; γ(ДИ): ±0,08 %	Ток загрузки 1 канала БВПР-3	от 0 до 68 мВ	от 0 до 180 А	γ(ВПИ): ±0,15	γ(ВПИ): ±0,15
26	-	MC-227К1: от -10 до +68 мВ; γ(ДИ): ±0,08 %	Ток возбуждения	от 0 до 57 мВ	от 0 до 15 А	γ(ВПИ): ±0,15	γ(ВПИ): ±0,15
27	-	MC-227К1: от -10 до +68 мВ; γ(ДИ): ±0,08 %	Ток загрузки 2 канала БВПР-3	от 0 до 68 мВ	от 0 до 90 А	γ(ВПИ): ±0,15	γ(ВПИ): ±0,15
28	-	MC-227U1: от 0 до 10 В; γ(ДИ): ±0,08 %	Расход, положения дозатора	от 0 до 6,5 В	от 0 до 450 кг/ч	γ(ВПИ): ±0,15	γ(ВПИ): ±0,20
29	-	MC-227U1: от 0 до 10 B; γ(ДИ): ±0,08 %	Давление	от 0 до 6,5 В	от 0 до 1,8 МПа (от 0 до 18 кгс/см²)	γ(ВПИ): ±0,15	γ(ВПИ): ±0,20

1	2	3	4	5	6	7	8
30	ТСП 9203: от -50 до +150 °C; 100П; КД А	MC-227R3: от 0 до 200 Ом; γ(ДИ): ±0,08 %	Температура потока на входе в РЛК №1	от -50 до +150 °C (от 223 до 423 K)	от -50 до +150 °C (от 223 до 423 K)	Δ: ±1,0 °C (±1,0 K)	Δ: ±0,5 °C (±0,5 K)
31	ТСП 9203: от -50 до +150 °C; 100П; КД А	MC-227R3: от 0 до 200 Ом; γ(ДИ): ±0,08 %	Температура потока на входе в РЛК №2	от -50 до +150 °C (от 223 до 423 K)	от -50 до +150 °C (от 223 до 423 K)	Δ: ±1,0 °C (±1,0 K)	Δ: ±0,5 °C (±0,5 K)
32	ТСП 9203: от -50 до +150 °C; 100П; КД А	MC-227R3: от 0 до 200 Ом; γ(ДИ): ±0,08 %	Температура потока на входе в РЛК №3	от -50 до +150 °C (от 223 до 423 K)	от -50 до +150 °C (от 223 до 423 K)	Δ: ±1,0 °C (±1,0 K)	Δ: ±0,5 °C (±0,5 K)
33	ТСП 9203: от -50 до +150 °C; 100П; КД А	MC-227R3: от 0 до 200 Ом; γ(ДИ): ±0,08 %	Температура потока на входе в РЛК №4	от -50 до +150 °C (от 223 до 423 K)	от -50 до +150 °C (от 223 до 423 K)	Δ: ±1,0 °C (±1,0 K)	Δ: ±0,5 °C (±0,5 K)
34	ТСП 9203: от -50 до +150 °C; 100П; КД А	MC-227R3: от 0 до 200 Ом; γ(ДИ): ±0,08 %	Температура топлива	от -50 до +150 °C (от 223 до 423 K)	от -50 до +150 °C (от 223 до 423 K)	Δ: ±1,0 °C (±1,0 K)	Δ: ±0,5 °C (±0,5 K)
35	RPT-410F: от 60 до 110 кПа; Δ: ±100 Па	MC-451+ME-401: от 0,01 до 5000 Гц; δ: ±0,01 %	Атмосферное давление	от 60 до 110 кПа	от 60 до 110 кПа	Δ: ±125 Πa	Δ: ±5 Πa
36	Метран-100-ДД- 1410: от 0 до 250 Па; γ(ВПИ): ±0,25 %	MC-227C2: от 0 до 20 мА; γ(ДИ): ±0,08 %	Перепад давлений между полным давлением на входе в РЛК и атмосферным	от 0 до 100 Па (от 0 до 10 кгс/м²)	от 0 до 100 Па (от 0 до 10 кгс/м²)	γ(ВПИ): ±0,75	γ(ВПИ): ±0,50
37- 39	Метран-100-ДД- 1430: от 0 до 16 кПа; γ(ВПИ): ±0,10 %	MC-227C2: от 0 до 20 мА; γ(ДИ): ±0,08 %	Перепад давлений между атмосферным и статическим в мерном сечении РЛК	от 2 до 15 кПа (от 20 до 1500 кгс/м²)	от 2 до 15 кПа (от 20 до 1500 кгс/м²)	γ(ВПИ): ±0,20	γ(ВПИ): ±0,50

1	2	3	4	5	6	7	8
40	Метран-100-ДД- 1410: от 0 до 400 Па; γ(ВПИ): ±0,25 %	МС-227С2: от 0 до 20 мА; γ(ДИ): ±0,08 %	Перепад давлений между атмосферным и давлением окружающей среды (в боксе, в районе среза сопла)	от 0 до 400 Па (от 0 до 40 кгс/м²)	от 0 до 400 Па (от 0 до 40 кгс/м²)	γ(ВПИ): ±0,50	γ(ВПИ): ±0,20
41- 42	Метран-100-ДД- 1411: от 0 до 1000 Па; γ (ВПИ): $\pm 0,15$ %	MC-227C2: от 0 до 20 мА; γ(ДИ): ±0,08 %	Перепад статических давлений вдоль мерной проставки	от 0 до 1000 Па (от 0 до 100 кгс/м²)	от 0 до 1000 Па (от 0 до 100 кгс/м²)	γ(ВПИ): ±0,25	γ(ВПИ): ±0,25
43- 45	Метран-100-ДД- 1430: от 0 до 25 кПа; γ(ВПИ): ±0,10 %	MC-227C2: от 0 до 20 мА; γ(ДИ): ±0,08 %	Перепад между полным и статическим давлением в мерном сечении проставки	от 0 до 24,5 кПа (от 0 до 2450 кгс/м²)	от 0 до 24,5 кПа (от 0 до 2450 кгс/м²)	γ(ВПИ): ±0,20	γ(ВПИ): ±0,25
46	Метран-100-ДД- 1422: от 0 до 60 кПа; γ (ВПИ): $\pm 0,10$ %	MC-227C2: от 0 до 20 мА; γ(ДИ): ±0,08 %	Статическое давление в мерном сечении проставки	от 10 до 50 кПа (от 0,1 до 0,5 кгс/см²)	от 10 до 50 кПа (от 0,1 до 0,5 кгс/см ²)	γ(ВПИ): ±0,20	γ(ВПИ): ±0,30
47	Метран-100-ДД- 1422: от 0 до 60 кПа; γ (ВПИ): \pm 0,10 %	MC-227C2: от 0 до 20 мА; γ(ДИ): ±0,08 %	Полное давление в мерном сечении проставки	от 10 до 50 кПа (от 0,1 до 0,5 кгс/см²)	от 10 до 50 кПа (от 0,1 до 0,5 кгс/см²)	γ(ВПИ): ±0,20	γ(ВПИ): ±0,30
48	Метран-100-ДИ- 1141: от 0 до 250 кПа; γ (ВПИ): ±0,10 %	MC-227C2: от 0 до 20 мА; γ(ДИ): ±0,08 %	Давление воздуха за вентилятором	от 30 до 200 кПа (от 0,3 до 2,0 кгс/см²)	от 30 до 200 кПа (от 0,3 до 2,0 кгс/см²)	γ(ВПИ): ±0,20	γ(ВПИ): ±0,30
49	Метран-100-ДИ- 1151: от 0 до 1,6 МПа; γ (ВПИ): \pm 0,10 %	MC-227C2: от 0 до 20 мА; γ(ДИ): ±0,08 %	Давление воздуха за КВД	от 400 до 1600 кПа (от 4 до 16 кгс/см²)	от 400 до 1600 кПа (от 4 до 16 кгс/см²)	γ(ВПИ): ±0,20	γ(ВПИ): ±0,30
50	Метран-100-ДИВ- 1341: от -50 до +50 кПа; γ (ВПИ): ± 0.25 %	MC-227C2: от 0 до 20 мА; γ(ДИ): ±0,08 %	Давление в маслобаке	от -50 до +50 кПа (от -0,5 до +0,5 кгс/см ²)	от -50 до +50 кПа (от -0,5 до +0,5 кгс/см ²)	γ(ВПИ): ±1,80	γ(ВПИ): ±2,20

1	олжение таолицы <i>2</i>	3	4	5	6	7	8
51	DMP 331: от 0 до 1,6 МПа; γ(ВПИ): ±0,25 %	MC-227C2: от 0 до 20 мА; γ(ДИ): ±0,08 %	Давление масла на входе	от 0 до 1200 кПа (от 0 до 12 кгс/см²)	от 0 до 1200 кПа (от 0 до 12 кгс/см²)	γ(ВПИ): ±0,50	γ(ВПИ): ±0,20
52	Метран-55-ДМП- 333: от 0 до 16 МПа; γ(ВПИ): ±0,5 %	MC-227C2: от 0 до 20 мА; γ(ДИ): ±0,08 %	Избыточное давление воздуха (газа) на входе в пусковое сопло	от 0 до 15 МПа (от 0 до 150 кгс/см²)	от 0 до 15 МПа (от 0 до 150 кгс/см²)	γ(ВПИ): ±0,70	γ(ВПИ): ±0,30
53	Метран-55-ДМП- 331: от 0 до 1,0 МПа; γ(ВПИ): ±0,5 %	MC-227C2: от 0 до 20 мА; γ(ДИ): ±0,08 %	Давление воздуха на входе в систему обдува маслобака	от 0 до 600 кПа (от 0 до 6 кгс/см²)	от 0 до 600 кПа (от 0 до 6 кгс/см²)	γ(ВПИ): ±1,10	γ(ВПИ): ±0,40
54	Метран-55-ДИВ- 535: от -60 до 500 кПа; γ(ВПИ): ±0,5 %	MC-227C2: от 0 до 20 мА; γ(ДИ): ±0,08 %	Избыточное давление топлива на входе в изделие	от 0 до 400 кПа (от 0 до 4 кгс/см²)	от 0 до 400 кПа (от 0 до 4 кгс/см²)	γ(ВПИ): ±0,80	γ(ВПИ): ±1,40
55	Метран-55-ДМП- 331: от 0 до 1,0 МПа; γ(ВПИ): ±0,5 %	MC-227C2: от 0 до 20 мА; γ(ДИ): ±0,08 %	Давление пускового топлива	от 0 до10,20 кгс/см²	от 0 до10,20 кгс/см ²	γ(ВПИ): ±0,80	γ(ВПИ): ±1,40
56	DMP 331 от 0 до 2500 кПа; γ(ВПИ): ±0,25 %	MC-227C2: от 0 до 20 мА; γ(ДИ): ±0,08 %	Давление топлива перед форсункой	от 0 до 2500 кПа (от 0 до25 кгс/см²)	от 0 до 2500 кПа (от 0 до25 кгс/см²)	γ(ВПИ): ±0,40	γ(ВПИ): ±0,20
57	Promass 83 F от 0 до 450 кг/ч δ: ±0,10 %	MC-227C2: от 0 до 20 мА; γ(ДИ): ±0,08 %	Расход топлива	от 0 до 450 кг/ч	от 0 до 450 кг/ч	γ(ВПИ): ±0,20	γ(ВПИ): ±0,15
58	С2: до 0,5 т; КТ 0,1 ТВ-003/05Д: Δ: ± 0,40 мкВ/В	MC-227C2: от 0 до 20 мА; γ(ДИ): ±0,08 %	Сила тяги с наддувом	п	редставлены в та	блице 3	

1	олжение таолицы <i>2</i> 2	3	4	5	6	7	8
59	С2: до 0,5 т; КТ 0,1 ТВ-003/05Д: Δ: ± 0,40 мкВ/В	MC-227C2: от 0 до 20 мА; γ(ДИ): ±0,08 %	Сила тяги без наддува	представлены в таблице 3			
60- 79	ТХК(L): от -20 до +100°C; КД 2	МІС-140/96: от -200 до +800 °C; Δ: ±0,5 °C	Температура воздуха на входе двигателя	от -20 до +100 °C (от 253 до 373 K)	от -20 до +100 °C (от 253 до 373 K)	Δ: ±3,0 °C (±3,0 K)	Δ: ±0,2 °C (±0,2 K)
80	ТХА(К): от +200 до +900 °C; КД 2	MIC-140/96: от -200 до +800 °C; Δ: ±0,5 °C	Температура	от +200 до +900 °C	от +200 до +900 °C	Δ: ±7,0 °C (±7,0 K)	Δ: ±0,2 °C (±0,2 K)
81	TXA(K): от +200 до +1100 °C; КД 2	МІС-140/96: от -200 до +1372 °C; Δ: ±0,5 °C	Температура	от +200 до +1100 °C	от +200 до +1100 °C	Δ: ±9,0 °C (±9,0 K)	Δ: ±0,2 °C (±0,2 K)
82	ТХК(L): от -50 до +250 °C; КД 2	MIC-140/96: от -200 до +800 °C; Δ: ±0,5 °C	Температура воздуха обдува маслоблока	от -50 до +250 °C	от -50 до +250 °C	Δ: ±3,0 °C (±3,0 K)	Δ: ±0,2 °C (±0,2 K)
83	ТХК(L): от -50 до +250 °C; КД 2	MIC-140/96: от -200 до +800 °C; Δ: ±0,5 °C	Температура масла на входе	от -50 до +250 °C	от -50 до +250 °C	Δ: ±3,0 °C (±3,0 K)	Δ: ±0,2 °C (±0,2 K)
84	ТХК(L): от +100 до +350 °C; КД 2	MIC-140/96: от -200 до +800 °C; Δ: ±0,5 °C	Температура масла на выходе задней опоры	от +100 до +350 °C	от +100 до +350 °C	Δ: ±3,0 °C (±3,0 K)	Δ: ±0,2 °C (±0,2 K)
85	ТХК(L): от +100 до +350 °C; КД 2	MIC-140/96: от -200 до +800 °C; Δ: ±0,5 °C	Температура масла фильтра откачки	от +100 до +350 °C	от +100 до +350 °C	Δ: ±3,0 °C (±3,0 K)	Δ: ±0,2 °C (±0,2 K)
86	ТХК(L): от +100 до +350 °C; КД 2	MIC-140/96: от -200 до +800 °C; Δ: ±0,5 °C	Температура масла корпуса приводов	от +100 до +350 °C	от +100 до +350 °C	Δ: ±3,0 °C (±3,0 K)	Δ: ±0,2 °C (±0,2 K)

ттродо	олжение таолицы 2	2	1			7	0
	2	3	4	5	6	7	8
87	-	MC-451+ME-401: от 0,01 до 5000 Гц; δ: ±0,01 %	Частота вращения ротора КВД	от 100 до 60000 мин ⁻¹	от 100 до 60000 мин ⁻¹	δ: ±0,01 %	δ: ±0,01 %
88	ТХК(L): от -50 до +100 °C; КД 2	MIC-140/96: от -200 до +800 °C; Δ: ±0,5 °C	Температура воздуха в боксе	от -50 до +100 °C	от -50 до +100 °C	Δ: ±3,0 °C (±3,0 K)	Δ: ±0,2 °C (±0,2 K)
89	ИПТВ-206/М3-03: от 0 до 100 %; Δ: ±2 %	MC-227C2: от 0 до 20 мА; γ(ДИ): ±0,08 %	Относительная влажность в боксе	от 0 до 100 %	от 0 до 100 %	Δ : ±2,5 %	Δ: ±1,5 %
90	ИПТВ-206/М3-03: от -40 до +110 °C; Δ: ±0,4 °C	MC-227C2: от 0 до 20 мА; γ(ДИ): ±0,08 %	Температура с датчика влажности в боксе	от -40 до +110 °C	от -40 до +110 °C	Δ: ±0,60 °C	Δ: ±0,30 °C
91	DMP 333 от 0 до 40 МПа; γ(ВПИ): ±0,25 %	MC-227C2: от 0 до 20 мА; γ(ДИ): ±0,08 %	Давление в баллонах высокого давления	от 0 до 20 МПа (от 0 до 200 кгс/см²)	от 0 до 20 МПа (от 0 до 200 кгс/см²)	γ(ВПИ): ±0,70	γ(ВПИ): ±0,30
92	DMP 333 от 0 до 40 МПа; γ(ВПИ): ±0,25 %	MC-227C2: от 0 до 20 мА; γ(ДИ): ±0,08 %	Давление баллонов на Эквиваленте	от 0 до 20 МПа (от 0 до 200 кгс/см²)	от 0 до 20 МПа (от 0 до 200 кгс/см²)	γ(ВПИ): ±0,70	γ(ВПИ): ±0,30
93- 100	-	MC-227C2: от 0 до 20 мА; γ(ДИ): ±0,08 %	Дополнительный канал для измерения показаний с приборов, имеющих выход в мА	от 0 до 20 мА	от 0 до 20 мА	γ(ВПИ): ±0,08	γ(ВПИ): ±0,10
101- 104	TXA(K): от +200 до +1100 °C; КД 2	МІС-140/96: от -200 до +1372 °C; Δ: ±0,5 °C	Дополнительный канал для измерения показаний с термопар	от +200 до +1100 °C	от +200 до +1100 °C	Δ: ±9,0 °C (±9,0 K)	Δ: ±0,2 °C (±0,2 K)
105- 113	ТХК(L): от -40 до +350 °C; КД 2	MIC-140/96: от -200 до +800 °C; Δ: ±0,5 °C	Дополнительный канал для измерения показаний с термопар	от -40 до +350 °C	от -40 до +350 °C	Δ: ±3,0 °C (±3,0 K)	Δ: ±0,2 °C (±0,2 K)

1	2	3	4	5	6	7	8
114- 121	ТХК(L): от +350 до +800 °C; КД 2	MIC-140/96: от -200 до +800 °C; Δ: ±0,5 °C	Дополнительный канал для измерения показаний с термопар	от +350 до +800 °C	от +350 до +800 °C	Δ: ±5,0 °C (±5,0 K)	Δ: ±0,2 °C (±0,2 K)
122- 126	-	MC-227U1: от 0 до 10 В; γ(ДИ): ±0,08 %	Дополнительный канал для измерения показаний с приборов, имеющих выход в В	от 0 до 10 В	от 0 до 10 В	γ(ВПИ): ±0,10	γ(ВПИ): ±0,15
127- 131	-	MC-227U2: от 0 до 100 B; γ(ДИ): ±0,08 %	Стендовые дискретные команды	от 0 до 35 В	от 0 до 35 В	γ(ВПИ): ±0,25	γ(ВПИ): ±0,30

Примечания:

- 1 В таблице приняты следующие условные обозначения: ИК измерительный канал; MX метрологические характеристики; Δ пределы допускаемой абсолютной погрешности измерений; δ пределы допускаемой относительной погрешности измерений; $\gamma(B\Pi U)$ пределы допускаемой приведенной (к верхнему пределу измерений) погрешности измерений; $\gamma(\Pi U)$ пределы допускаемой приведенной (к диапазону измерений) погрешности измерений; $\gamma(\Pi U)$ класс допуска по $\gamma(\Pi U)$ пределы допускаемой приведенной (к диапазону измерений) погрешности измерений; $\gamma(\Pi U)$ класс допуска по $\gamma(\Pi U)$ компрессор высокого давления. $\gamma(\Pi U)$ компрессор низкого давления; $\gamma(\Pi U)$ блок выпрямления и преобразования; $\gamma(\Pi U)$ расходомерный лемнискатный коллектор.
- 2 Дополнительная погрешность измерений нормирована для рабочих условий эксплуатации и обусловлено только измерением температуры окружающего воздуха в кабине оператора от нормальной (20±5) °C.
- 3 Значение СКЗ виброскорости ИК 1 V, мм/с, определяется по формуле:

$$V = \frac{a}{2\pi f} \cdot 10^3$$

где a - CK3 виброускорения, м/ c^2 ;

f – частота колебаний, Гц.

- 4 В качестве ПП ИК 25-27 следует применять измерительные шунты по ГОСТ 8042-93 класса точности 0,5.
- 5 ИК 132-173 предназначены для фиксации дискретных команд и отображения параметров работы комплексного регулятора давления

Таблица 3 – Метрологические характеристики МИС

Наименование характеристики	Значение		
Количество ИК	2		
Диапазон измерений силы от тяги двигателя, кгс	от 0 до 400		
Пределы допускаемой приведенной (к $0.5 \cdot R_{\text{max}}$) погрешности			
измерений силы от тяги двигателя			
в диапазон от 0 до $0.5 \cdot R_{\text{max}}$ включ., %			
Пределы допускаемой относительной погрешности			
измерений силы от тяги двигателя			
в диапазоне св. $0.5 \cdot R_{\text{max}}$ до R_{max} , %	±0,4		
Порог реагирования r , кгс	$0,0002 \cdot R_{\text{max}}$		
Примечание:			
$R_{ m max}$ – верхний предел диапазона измерений силы от тяги двигателя, кгс.			

Таблица 4 – Основные технические характеристики

Наименование характеристики	Значение
Параметры электрического питания:	
- напряжение переменного тока, В	230±23
- частота переменного тока, Гц	50±1
Условия эксплуатации:	
- температура окружающей среды, °С	от +10 до +30
- относительная влажность %, не более	80
- атмосферное давление, кПа	от 84,0 до 106,7

Знак утверждения типа

наносится титульные листы эксплуатационной документации типографским способом и на монитор автоматизированного рабочего места оператора в виде наклейки.

Комплектность средства измерений

Таблица 5 – Комплектность средства измерений

	±	
Наименование	Обозначение	Количество
Система автоматизированная		
информационно-измерительная	-	1 шт.
АИИС-37-04		
Руководство оператора	-	1 экз.
Формуляр	-	1 экз.
Методика поверки	ОЦСМ 066196-2019 МП	1 экз.

Поверка

осуществляется по документу ОЦСМ 066196-2019 МП «ГСИ. Система автоматизированная информационно-измерительная АИИС-37-04. Методика поверки», утвержденному ФБУ «Омский ЦСМ» 25.04.2019 г.

Основные средства поверки:

- в соответствии с нормативными документами на поверку средств измерений, входящих в состав ИС;
- калибратор многофункциональный со встраиваемыми модулями поверки осциллографов 300 МГц, 600 МГц Fluke 5502E (рег. №55804-13);
 - гири класса M₁ по ГОСТ OIML R 111-1-2009.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых средств измерений с требуемой точностью.

Знак поверки наносится на свидетельство о поверке.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к системе автоматизированной информационно-измерительной АИИС-37-04

Государственная поверочная схема для средств измерений виброперемещения, виброскорости, виброускорения и углового ускорения, утвержденная приказом Федерального агентства по техническому регулированию и метрологии от 27.12.2018 г. №2772

ГОСТ Р 8.833-2013 ГСИ. Государственная поверочная схема для средств измерений электрического напряжения постоянного тока в диапазоне $\pm (1...500)$ кВ

Государственная поверочная схема для средств измерений силы постоянного электрического тока в диапазоне от $1 \cdot 10^{-16}$ до 100 A, утвержденная приказом Федерального агентства по техническому регулированию и метрологии от 01.10.2018 г. №2091

ГОСТ 8.558-2009 ГСИ. Государственная поверочная схема для средств измерений температуры

Государственная поверочная схема для средств измерений избыточного давления до 4000 МПа, утвержденная приказом Федерального агентства по техническому регулированию и метрологии от 29.06.2018 г. №1339

Государственная поверочная схема для средств измерений массы и объема жидкости в потоке, объема жидкости и вместимости при статических измерениях, массового и объемного расходов жидкости, утвержденная приказом Федерального агентства по техническому регулированию и метрологии от 07.02.2018 г. №256

ГОСТ 8.640-2014 ГСИ. Государственная поверочная схема для средств измерений силы

Государственная поверочная схема средств измерений времени и частоты, утвержденная приказом Федерального агентства по техническому регулированию и метрологии от 31 июля 2018 г. № 1621

ГОСТ 8.547-2009 ГСИ. Государственная поверочная схема для средств измерений влажности газов

ГОСТ Р 51841-2001 Программируемые контроллеры. Общие технические требования и методы испытаний

ГОСТ Р 52931-2008 Приборы контроля и регулирования технологических процессов. Общие технические условия

Изготовитель

Филиал Публичного акционерного общества «ОДК-Сатурн» - Омское Моторостроительное конструкторское бюро (Филиал ПАО «ОДК-Сатурн» - ОМКБ)

ИНН 7610052644

Юридический адрес: 152903, Ярославская обл., Рыбинский р-н., г. Рыбинск, пр-кт. Ленина, 163

Адрес: 644076, г. Омск, ул. Окружная дорога, 3

Телефон (факс): +7 (3812) 36-07-04; +7 (3812) 36-04-46

Web-сайт: https://www.omkb.ru

E-mail: omkb@omkb.ru

Испытательный центр

Федеральное бюджетное учреждение «Государственный региональный центр стандартизации, метрологии и испытаний в Омской области» (ФБУ «Омский ЦСМ»)

Адрес: 644116, г. Омск, ул. 24 Северная, 117-А

Телефон (факс): +7 (3812) 68-07-99; +7 (3812) 68-04-07

Web-сайт: http://csm.omsk.ru E-mail: info@ocsm.omsk.ru

Аттестат аккредитации ФБУ «Омский ЦСМ» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.311670 от 01.07.2016 г.

Заместитель
Руководителя Федерального
агентства по техническому
регулированию и метрологии

А.В. Кулешов

М.п. « ___ » _____ 2019 г.