ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «Южная энергосбытовая компания» (ЗАО «Кореновский молочно-консервный комбинат»)

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «Южная энергосбытовая компания» (ЗАО «Кореновский молочно-консервный комбинат») (далее – АИИС КУЭ) предназначена для измерений активной и реактивной электроэнергии, автоматизированного сбора, обработки, хранения, формирования отчетных документов и передачи полученной информации заинтересованным организациям в рамках согласованного регламента.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную двухуровневую автоматизированную систему с централизованным управлением и распределенной функцией измерений.

АИИС КУЭ включает в себя следующие уровни:

1-й уровень — измерительно-информационные комплексы (ИИК), включающие в себя измерительные трансформаторы тока (ТТ), измерительные трансформаторы напряжения (ТН) и счетчики активной и реактивной электрической энергии (счетчики), вторичные измерительные цепи и технические средства приема-передачи данных.

2-й уровень – информационно-вычислительный комплекс (ИВК), включающий в себя сервер с программным комплексом (ПК) «Энергосфера», устройство синхронизации времени, автоматизированное рабочее место (АРМ), каналообразующую аппаратуру, технические средства для организации локальной вычислительной сети и разграничения прав доступа к информации.

Первичные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности, которые усредняются за период 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мощности.

Электрическая энергия, как интеграл по времени от средней за период 0,02 с мощности, вычисляется для интервалов времени 30 мин.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение мгновенных значений мощности на интервале времени усреднения 30 мин.

Цифровой сигнал с выходов счетчиков по проводным линиям связи поступает на GSM-модем и далее по каналам связи, организованным по технологии CSD стандарта GSM, поступает на сервер, где осуществляется обработка измерительной информации, в частности вычисление электрической энергии и мощности с учетом коэффициентов трансформации ТТ и ТН, формирование и хранение поступающей информации, оформление отчетных документов. От сервера информация передается на APM по каналу связи сети Ethernet.

Передача информации от уровня ИВК в программно-аппаратный комплекс АО «АТС» с электронной цифровой подписью субъекта оптового рынка электроэнергии (ОРЭ), в филиал АО «СО ЕЭС» и в другие смежные субъекты ОРЭ осуществляется по каналу связи с протоколом SMTP сети Internet в виде хml-файлов формата 80020 в соответствии с приложением 11.1.1 «Формат и регламент предоставления результатов измерений, состояния средств и объектов измерений в АО «АТС», АО «СО ЕЭС» и смежным субъектам» к Положению о порядке получения статуса субъекта оптового рынка и ведения реестра субъектов оптового рынка электрической энергии и мощности.

Результаты измерений электроэнергии передаются в целых числах кВт·ч и соотнесены с единым календарным временем.

АИИС КУЭ имеет систему обеспечения единого времени (СОЕВ), которая включает в себя часы счетчиков, часы сервера, устройство синхронизации времени УСВ-3, синхронизирующее часы измерительных компонентов системы по сигналам проверки времени, получаемым от ГЛОНАСС/GPS-приемника.

Сравнение показаний часов сервера с УСВ-3 осуществляется 1 раз в минуту. Корректировка часов сервера производится независимо от величины расхождений.

Сравнение показаний часов счетчиков с часами сервера осуществляется во время сеанса связи со счетчиками. Корректировка часов счетчиков производится при расхождении показаний часов счетчиков с часами сервера на величину более ± 2 с, но не чаще 1 раза в сутки.

Журналы событий счетчика и сервера отображают факты коррекции времени с обязательной фиксацией времени до и после коррекции или величины коррекции времени, на которую было скорректировано устройство.

Программное обеспечение

В АИИС КУЭ используется программный комплекс (ПК) «Энергосфера» версии не ниже 8.0. ПК «Энергосфера» обеспечивает защиту измерительной информации паролями в соответствии с правами доступа. Средством защиты данных при передаче является кодирование данных, обеспечиваемое программными средствами ПК «Энергосфера». Метрологически значимая часть ПК «Энергосфера» указана в таблице 1. Уровень защиты ПК «Энергосфера» от непреднамеренных и преднамеренных изменений – «высокий» в соответствии с Р 50.2.077-2014.

Таблица 1 – Идентификационные данные ПК «Энергосфера»

	1		
Идентификационные данные (признаки)	Значение		
Идентификационное наименование ПО	pso_metr.dll		
Номер версии (идентификационный номер) ПО	не ниже 1.1.1.1		
Цифровой идентификатор ПО	CBEB6F6CA69318BED976E08A2BB7814B		
Алгоритм вычисления цифрового идентификатора ПО	MD5		

Метрологические и технические характеристики

Таблица 2 — Состав измерительных каналов (ИК) АИИС КУЭ и их метрологические характеристики

	ица 2 — Состав изме	Измерительные компоненты					-	огические истики ИК				
Но- мер ИК	Наименование точки измерений	TT	ТН	Счетчик	Устройство синхрони- зации вре- мени	Сервер	Вид электро энер- гии	допускае- мой основ- ной отно- сительной погрешно-	Границы допускаемой относительной погрешности в рабочих условиях, $(\pm\delta)$ %			
1	2	3	4	5	6	7	8	9	10			
1	ПС 35кВ Элитная, КРУН-10кВ, 1 Сек 10кВ, яч. ЭТ-7	ТВК-10 Кл.т. 0,5 300/5 Рег. № 8913-82	НТМИ-10-66 Кл.т. 0,5 10000/100 Рег. № 831-69	СЭТ-4ТМ.03М.01 Кл.т. 0,5S/1,0 Рег. № 36697-12		HPE Pro- Liant DL20 Gen9			Актив- ная Реак-	1,3 2,5	3,2 5,5	
	10kB, x 1. 5 1 7	Фазы: А; С	Фазы: АВС	101.342 30077 12			тивная	2,3	3,3			
2	ПС 35кВ Элитная, КРУН-10кВ, 2 Сек 10кВ, яч. ЭТ-6	ТОЛ-СЭЩ-10 Кл.т. 0,5 300/5 Рег. № 32139-06 Фазы: A; C	НАМИ-10 Кл.т. 0,2 10000/100 Рег. № 11094-87 Фазы: АВС	СЭТ-4ТМ.03М.01 Кл.т. 0,5S/1,0 Рег. № 36697-12	УСВ-3 Рег. №		Liant	HPE Pro- Liant	HPE Pro- Liant	Актив- ная Реак- тивная	1,1 2,2	3,2 5,4
3	ПС 35кВ Кореновский завод сухой сыворотки, КРУН-10кВ, 1 Сек 10кВ, яч. 3С-9	ТОЛ-10-I Кл.т. 0,5 300/5 Рег. № 47959-11 Фазы: А; С	НАМИ-10-95УХЛ2 Кл.т. 0,5 10000/100 Рег. № 20186-05 Фазы: ABC	СЭТ-4ТМ.03.01 Кл.т. 0,5S/1,0 Рег. № 27524-04	64242-16		Актив- ная Реак- тивная	1,3 2,5	3,2 5,1			
4	ПС 35кВ Кореновский завод сухой сыворотки, КРУН-10кВ, 2 Сек 10кВ, яч. 3С-4	ТОЛ-СЭЩ-10 Кл.т. 0,5 300/5 Рег. № 32139-06 Фазы: А; С	НАМИ-10 Кл.т. 0,2 10000/100 Рег. № 11094-87 Фазы: ABC	СЭТ-4ТМ.03.01 Кл.т. 0,5S/1,0 Рег. № 27524-04			Актив- ная Реак- тивная	1,1 2,2	3,2 5,1			

Продолжение таблицы 2

1	2	3	4	5	6	7	8	9	10
5	ТП-ЭТ-5-169П 10кВ, РУ-0,4кВ, ввод 0,4кВ Т-1	Т-0,66 Кл.т. 0,5S 600/5 Рег. № 52667-13 Фазы: А; В; С	-	Меркурий 234 ARTM-03 PB.G Кл.т. 0,5S/1,0 Рег. № 48266-11			Актив- ная Реак- тивная	1,0 2,1	3,2 5,5
6	ТП-ЭТ-6-109П 10кВ, ввод 0,4кВ Т-1	ТШП 0,66 Кл.т. 0,5 600/5 Рег. № 15173-01 Фазы: A; B; C	-	Меркурий 230 ART-03 PQRSIDN Кл.т. 0,5S/1,0 Рег. № 23345-07	УСВ-3 Рег. № 64242-16	HPE Pro- Liant DL20 Gen9	Актив- ная Реак- тивная	1,0 2,1	3,1 5,4
7	ТП-ЭТ-6-109П 10кВ, ввод 0,4кВ Т-2	ТШП 0,66 Кл.т. 0,5 600/5 Рег. № 15173-01 Фазы: A; B; C	-	Меркурий 230 ART-03 PQRSIDN Кл.т. 0,5S/1,0 Рег. № 23345-07			Актив- ная Реак- тивная	1,0 2,1	3,1 5,4
Пределы допускаемой погрешности COEB ±5 с.									

Применания:

Примечания:

- 1 В качестве характеристик погрешности ИК установлены границы допускаемой относительной погрешности ИК при доверительной вероятности, равной 0,95.
- 2 Характеристики погрешности ИК указаны для измерений активной и реактивной электроэнергии на интервале времени 30 мин.
- 3 Погрешность в рабочих условиях указана для ИК № 5 для тока 2 % от $I_{\text{ном}}$, для остальных ИК для тока 5 % от $I_{\text{ном}}$; $\cos j = 0.8$ инд.
- 4 Допускается замена ТТ, ТН и счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в таблице 2, при условии, что предприятие-владелец АИИС КУЭ не претендует на улучшение указанных в таблице 2 метрологических характеристик. Допускается замена устройства синхронизации времени на аналогичное утвержденного типа, а также замена сервера без изменения используемого ПО (при условии сохранения цифрового идентификатора ПО). Замена оформляется актом в установленном собственником АИИС КУЭ порядке. Акт хранится совместно с настоящим описанием типа АИИС КУЭ как его неотъемлемая часть.

Таблица 3 – Основные технические характеристики ИК

Наименование характеристики ИК Наименование характеристики	Значение
1	2
Количество ИК	7
Нормальные условия:	
параметры сети:	
напряжение, % от Uном	от 95 до 105
ток, % от Іном	
для ИК № 5	от 1 до 120
для остальных ИК	от 5 до 120
коэффициент мощности соѕф	0,9
частота, Гц	от 49,8 до 50,2
температура окружающей среды, °С	от +15 до +25
Условия эксплуатации:	
параметры сети:	
напряжение, % от Uном	
ток, % от Іном	от 90 до 110
для ИК № 5	
для остальных ИК	от 1 до 120
коэффициент мощности соѕф	от 5 до 120
частота, Гц	от 0,5 до 1,0
температура окружающей среды в месте расположения ТТ и ТН, °С	от 49,6 до 50,4
температура окружающей среды в месте расположения счетчиков,	от -45 до +40
°C	от +10 до +30
температура окружающей среды в месте расположения сервера, °C	от +15 до +25
Надежность применяемых в АИИС КУЭ компонентов:	
для счетчиков типа СЭТ-4ТМ.03М:	
среднее время наработки на отказ, ч, не менее	165000
среднее время восстановления работоспособности, ч	2
для счетчиков типа СЭТ-4ТМ.03:	
среднее время наработки на отказ, ч, не менее	90000
среднее время восстановления работоспособности, ч	2
для счетчика типа Меркурий 234:	
среднее время наработки на отказ, ч, не менее	220000
среднее время восстановления работоспособности, ч	2
для счетчиков типа Меркурий 230:	
среднее время наработки на отказ, ч, не менее	150000
среднее время восстановления работоспособности, ч	2
для УСВ-3:	
среднее время наработки на отказ, ч, не менее	45000
среднее время восстановления работоспособности, ч	2
для сервера:	
среднее время наработки на отказ, ч, не менее	100000
среднее время восстановления работоспособности, ч	1
Глубина хранения информации:	
для счетчиков типов СЭТ-4ТМ.03М и СЭТ-4ТМ.03:	
тридцатиминутный профиль нагрузки в двух направлениях,	
сут, не менее	114
при отключении питания, лет, не менее	40

Продолжение таблицы 3

1	2
для счетчика типа Меркурий 234:	
тридцатиминутный профиль нагрузки в двух направлениях,	
сут, не менее	170
при отключении питания, лет, не менее	30
для счетчиков типа Меркурий 230:	
тридцатиминутный профиль нагрузки в двух направлениях,	
сут, не менее	85
при отключении питания, лет, не менее	10
для сервера:	
хранение результатов измерений и информации состояний	
средств измерений, лет, не менее	3,5

Надежность системных решений:

защита от кратковременных сбоев питания сервера с помощью источника бесперебойного питания;

резервирование каналов связи: информация о результатах измерений может передаваться в организации-участники оптового рынка электроэнергии по электронной почте.

В журналах событий фиксируются факты:

- журнал счетчика:

параметрирования;

пропадания напряжения;

коррекции времени в счетчике.

- журнал сервера:

параметрирования;

пропадания напряжения;

коррекции времени в счетчике и сервере;

пропадание и восстановление связи со счетчиком.

Защищенность применяемых компонентов:

 механическая защита от несанкционированного доступа и пломбирование: счетчика электрической энергии; промежуточных клеммников вторичных цепей напряжения; испытательной коробки;

сервера.

- защита на программном уровне информации при хранении, передаче, параметрировании:

счетчика электрической энергии;

сервера.

Возможность коррекции времени в:

счетчиках электрической энергии (функция автоматизирована);

сервере (функция автоматизирована).

Возможность сбора информации:

о состоянии средств измерений;

о результатах измерений (функция автоматизирована).

Цикличность:

измерений 30 мин (функция автоматизирована);

сбора не реже одного раза в сутки (функция автоматизирована).

Знак утверждения типа

наносится на титульные листы эксплуатационной документации на АИИС КУЭ типографским способом.

Комплектность средства измерений

В комплект поставки входит техническая документация на АИИС КУЭ и на комплектующие средства измерений.

Комплектность АИИС КУЭ представлена в таблице 4.

Таблица 4 — Комплектность АИИС КУЭ

Наименование	Обозначение	Количество,
паименование	Ооозначение	шт./экз.
Трансформаторы тока	TBK-10	2
Трансформаторы тока	ТОЛ-СЭЩ-10	4
Трансформаторы тока опорные	ТОЛ-10-І	2
Трансформаторы тока	T-0,66	3
Трансформаторы тока шинные	ТШП 0,66	6
Трансформаторы напряжения	НТМИ-10-66	1
Трансформаторы напряжения	НАМИ-10	2
Трансформаторы напряжения	НАМИ-10-95УХЛ2	1
Счетчики электрической энергии многофункциональные	CЭT-4TM.03M	2
Счетчики электрической энергии многофункциональные	CЭT-4TM.03	2
Счетчики электрической энергии статические трехфаз-	Меркурий 234	1
ные	Меркурии 234	1
Счетчики электрической энергии трехфазные статиче-		2
ские	теркурии 230	2
Устройства синхронизации времени	УСВ-3	1
Сервер	HPE ProLiant DL20 Gen9	1
Методика поверки	МП ЭПР-170-2019	1
Формуляр	ЭНПР.411711.018.ФО	1

Поверка

осуществляется по документу МП ЭПР-170-2019 «Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «Южная энергосбытовая компания» (ЗАО «Кореновский молочно-консервный комбинат»). Методика поверки», утвержденному ООО «ЭнергоПромРесурс» 28.05.2019 г.

Основные средства поверки:

- средства поверки в соответствии с нормативными документами на средства измерений, входящие в состав АИИС КУЭ;
- радиочасы МИР РЧ-02, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS) (регистрационный номер в Федеральном информационном фонде 46656-11);
- термогигрометр CENTER (мод.315) (регистрационный номер в Федеральном информационном фонде 22129-09);
- барометр-анероид метеорологический БАММ-1 (регистрационный номер в Федеральном информационном фонде 5738-76);
- термометр стеклянный жидкостный вибростойкий авиационный ТП-6 (регистрационный номер в Федеральном информационном фонде 257-49);
- миллитесламетр портативный универсальный ТПУ (регистрационный номер в Федеральном информационном фонде 28134-04);
- анализатор количества и показателей качества электрической энергии AR.5L (регистрационный номер в Федеральном информационном фонде 44131-10);
- вольтамперфазометр ПАРМА ВАФ®-А (регистрационный номер в Федеральном информационном фонде 22029-10).

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке АИИС КУЭ.

Сведения о методиках (методах) измерений

приведены в документе «Методика измерений электрической энергии с использованием АИИС КУЭ ООО «Южная энергосбытовая компания» (ЗАО «Кореновский молочно-консервный комбинат»)», свидетельство об аттестации № 195/RA.RU.312078/2019.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ООО «Южная энергосбытовая компания» (ЗАО «Кореновский молочно-консервный комбинат»)

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения

Изготовитель

Общество с ограниченной ответственностью «ЭнергоПромРесурс» (ООО «ЭнергоПромРесурс»)

ИНН 5024145974

Адрес: 143443, Московская обл., г. Красногорск, мкр. Опалиха, ул. Ново-Никольская, д. 57, офис 19

Телефон: (495) 380-37-61

E-mail: energopromresurs2016@gmail.com

Испытательный центр

Общество с ограниченной ответственностью «ЭнергоПромРесурс» (ООО «ЭнергоПромРесурс»)

Адрес: 143443, Московская обл., г. Красногорск, мкр. Опалиха, ул. Ново-Никольская, д. 57, офис 19

Телефон: (495) 380-37-61

E-mail: energopromresurs2016@gmail.com

Аттестат аккредитации ООО «ЭнергоПромРесурс» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.312047 от 26.01.2017 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

А.В. Кулешов

М.п. « ___ » _____2019 г.