ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система непрерывного контроля газовых выбросов энергоблока № 4 филиала Рефтинская ГРЭС ПАО «Энел Россия» (СНКГВ-М блока №4 Рефтинская ГРЭС)

Назначение средства измерений

Система непрерывного контроля газовых выбросов энергоблока № 4 филиала Рефтинская ГРЭС ПАО «Энел Россия» (СНКГВ-М- блока №4 Рефтинская ГРЭС) (далее - система СНКГВ-М) предназначена для:

- непрерывных автоматических измерений массовой концентрации загрязняющих веществ оксида углерода (CO), сумма оксидов азота NO_x (в пересчете на NO_2), диоксида серы (SO₂), твердых (взвешенных) частиц, а также объемной доли кислорода (O₂) и диоксида углерода (CO₂) и параметров (температура, давление/разрежение, скорость, влажность) и вычисления объемного расхода отходящих газов;
- сбора, обработки, визуализации, хранения полученных данных, представления полученных результатов в различных форматах;
- передачи по запросу накопленной информации на внешний удаленный компьютер (сервер) по проводному каналу связи.

Описание средства измерений

Принцип действия системы основан на следующих методах для определения:

- всех компонентов и влаги инфракрасная спектроскопия;
- кислорода циркониевая ячейка;
- температуры платиновый термометр сопротивления (изменение сопротивления сплава в зависимости от температуры);
 - давления/разрежения тензорезистивный;
 - скорости газа ультразвуковой;
 - твердых (взвешенных) частиц оптический (по интенсивности рассеянного света).

Система СНКГВ-М является стационарным изделием и состоит из 2-х уровней: уровень измерительных комплексов точки измерения (ИК ТИ); уровень информационновычислительного комплекса (ИВК).

В состав СНКГВ-М входят две точки измерения (ТИ): блок № 4 (газоходы А, Б). Для каждого газохода имеется комплект оборудования, приведенного ниже и расположенного в контейнерах. Комплекты объединены одним ПО (сервером).

Уровень ИК ТИ включает в себя следующие средства измерений утвержденного типа:

- газоанализатор MCA 10 (регистрационный номер 60755-15) для измерений массовой концентрации NO, NO₂, SO₂, CO и объемной доли CO₂, O₂, H₂O для каждой точки измерения (ТИ), в комплект поставки которого входят пробоотборный зонд с обратной продувкой и обогреваемая линия транспортировки пробы и система подготовки сжатого воздуха производства OOO «Евротехлаб»;
 - анализатор пыли DUSTHUNTER модели SP100 (регистрационный номер 45955-10);
- термопреобразователи сопротивления серии TR модификации TR10-B (регистрационный номер 47279-11);
- преобразователи давления измерительные Cerabar S PMP75 (регистрационный номер 41560-09);
- расходомер газа ультразвуковой Flowsic 100PR (регистрационный номер 43980-10), определяющий скорость газового потока, в комплекте с блоком обработки данных (вычислитель) МСU, в котором рассчитывается объемный расход по измеренным данным скорости и введенного значения площади поперечного сечения газохода с учетом профиля скорости в измерительном сечении газохода.

Горячая газовая проба поступает без преобразования от ТИ по пробоотборной обогреваемой линии (185 °C) на вход газоанализатора.

Газоанализаторы MCA 10 монтируются в газоаналитические кондиционируемые шкафы ETL Multigas.

Измеренные данные передаются по протоколу Modbus RTU в ПЛК Segnetics SMH4 и передается через модуль аналогового вывода Elemer 4024 в виде аналогового унифицированного сигнала от 4 до 20 мА в шкаф программно-технического комплекса (ПТК). Программируемый логический контроллер (ПЛК) Segnetics SMH4 и модуль аналогового вывода Elemer 4024 входят в состав газоаналитического шкафа.

Газоаналитические шкафы от двух ТИ размещаются в специализированных контейнерах и подключаются к программно-техническому комплексу ПТК с использованием токового интерфейса от 4 до 20 мА.

Аналоговый сигнал от первичных датчиков скорости потока передается на блок обработки данных MCU, который входит в состав расходомера Flowsick 100/PR.

Усреднённые сигналы значений температуры отходящих газов, а также значений давления/разрежения в газоходе поступают от контроллера системы ПТК на вычислительный блок ультразвуковой измерительной системы.

Уровень ИВК обеспечивает автоматический сбор, диагностику и автоматизированную обработку информации по анализу выходных газов в сечении газохода, автоматизированный сбор и обработку информации, а также обеспечивает интерфейс доступа к этой информации и ее предоставление в существующие АСУ ТП блока №4.

В состав ИВК входят:

- программно-технический комплекс (ПТК);
- автоматизированные рабочие места АРМ;
- сетевое оборудование.

ПТК построен на базе резервированных контроллеров Siemens SIMATIC S7-300 (регистрационный номер 15772-11), которые обеспечивают сбор данных со средств измерений, архивирование данных, передачу этой информации на АРМ и РСУ Блока №4.

В составе СНКГВ-М установлены два APM на базе промышленного компьютера SIEMENS SIMATIC IPC547D:

- АРМ ССОД совмещают функции АРМ оператора и АРМ инженера;
- АРМ ЦУСД центральное устройство сбора данных.

Контроллер со вспомогательным оборудованием размещается в специализированном шкафу ПТК с возможностью механической защиты от несанкционированного доступа. Шкаф ПТК устанавливается в контейнере системы.

Аналоговые сигналы от средств измерений (от 4 до 20 мА или от 0 до 5 мА) по сигнальным кабелям подаются от уровня ИК к уровню ИВК на модули аналоговых входов ПТК, где они нормализуются и преобразуются в цифровой код значений измеряемых величин. ПТК по цифровому каналу передачи данных передает информацию в АРМ для дальнейшей обработки и вывода отчетов на печать.

В ИВК функционирует комплекс программ, использующих измеряемые параметры для реализации информационных и расчетных задач системы.

Измерительные каналы системы заканчиваются средствами представления информации:

- видеотерминалы АРМ пользователей СНКГВ-М;
- устройства вывода информации на печать (принтеры).

В состав СНКГВ-М входят стандартные образцы состава газовых смесей в баллонах под давлением для проведения корректировки нулевых показаний и чувствительности.

Для защиты от несанкционированного доступа контейнер закрывается на замок.

Общий вид СНКГВ-М (контейнер) приведен на рисунке 1, вид внутри - на рисунке 2.

Рисунок 1 – Общий вид контейнера

Рисунок 2 - Вид газоаналитических шкафов ETL Multigas внутри контейнера

Программное обеспечение

Система имеет встроенное и автономное программное обеспечение.

Встроенное программное обеспечение (контроллера) осуществляет функции приема и регистрации данных о параметрах отходящего газа.

Автономное ПО (АРМ) осуществляет функции:

- отображение на экране APM измеренных мгновенных значений массовой концентрации NO, NO₂, SO₂, CO и твердых (взвешенных) частиц, объемной доли O_2 , CO_2 температуры и объемного расхода газового потока, приведение значений к нормальным условиям;
- автоматический расчет массового выброса (г/с) загрязняющих веществ оксида углерода (CO), оксида азота NO, диоксида азота NO₂, диоксида серы (SO₂), твердых (взвешенных) частиц;

- ведение архивов данных измеренных значений (массовой концентрации NO, NO₂, SO₂ и CO, объемной доли O₂, CO₂, температуры и объемного расхода газового потока) и расчетных значений (массовых выбросов загрязняющих веществ) с усреднением в 1 секунду, и 20 минутных значений;
 - автоматическое формирование суточного отчета на основе 20-ти минутных значений;
- формирование месячного, квартального и годового отчета на основе 20-ти минутных значений по запросу пользователя;
- визуализация процесса на дисплеях APM пользователей с помощью технологических схем с активной графикой, динамических сообщений, диаграмм, графиков, таблиц в соответствии со стандартами многооконной технологии Windows;
 - вывод на печать по запросу необходимой оперативной или архивной информации;
 - выполнение разработанных оперативных и неоперативных прикладных программ;
- поддержка многопользовательского, многозадачного непрерывного режима работы в реальном времени;
- регистрация и документирование событий, ведение оперативной БД параметров режима, обновляемой в процессе;
- контроль состояния объектов управления и значений параметров, формирование предупреждающих и аварийных сигналов;
- дополнительная обработка информации, расчеты, автоматическое формирование отчетов и сохранением их на жесткий диск APM;
 - обмен данными между смежными системами;
 - автоматическая самодиагностика состояния технических средств, устройств связи;
- выполнение функций системного обслуживания администрирование СНКГВ-М (контроль и управление полномочиями пользователей, переконфигурирование при модернизации системы).

Система имеет защиту встроенного программного обеспечения от преднамеренных или непреднамеренных изменений. Уровень защиты - «средний» по Р 50.2.077-2014.

Влияние встроенного ПО учтено при нормировании метрологических характеристик комплекса.

Идентификационные данные программного обеспечения приведены в таблице 1.

Таблица 1 – Идентификационные данные программного обеспечения

	Значение		
Идентификационные данные (признаки)	Встроенное ПО	Автономное ПО	
	(контроллера)	(APM)	
Идентификационное наименование ПО	S7_ CEMS2	APM_CEMS	
Номер версии (идентификационный номер) ПО	не ниже v1.3	не ниже v1.3	
Цифровой идентификатор ПО	4C049E4C ¹⁾ AC05E869 ²⁾	522fd482 ¹⁾	
(алгоритм)	CRC32	CRC32	

¹⁾ Значение контрольной суммы, указанное в таблице, относится только к файлам ПО указанной версии.

²⁾ Контрольные суммы для встроенного ПО S7_CEMS2 рассчитываются по двум модулям.

Метрологические и технические характеристики

Таблица 2 – Метрологические характеристики измерительных каналов системы (газоанализатор

с устройством отбора и подготовки пробы и пылемер)

с устройством о	тбора и подг	отовки про	бы и пылемер)			
Измерительные каналы	е Диапазоны показаний		Диапазоны измерений		Пределы допускаемой основной погрешности	
(определяемые компоненты)	массовой концентрации, мг/м ³	объемной доли, %	массовой концентрации, ${\rm M\Gamma/M}^3$	объемной доли, %	приведен- ной ¹⁾ ү, %	относитель- ной, δ, %
Оксид азота от 0 до 300	от 0 до 3000	0 -	от 0 до 300 включ.	1	±8	-
NO			св.300 до 3000	-	-	±8
Диоксид азота NO ₂	от 0 до 500	-	от 0 до 50 включ.	-	±10	1
1102			св. 50 до 500	-	-	±10
Оксид углерода (CO)	от 0 до 300	-	от 0 до 30 включ.	-	±8	-
(CO)			св. 30 до 300	-	-	±8
Диоксид серы от 0 до 25	от 0 до 2500	-	от 0 до 250 включ.	-	±8	-
(SO_2)			св. 250 до 2500	-	-	±8
Кислород	-	от 0 до 25	-	от 0 до 5 включ.	±4	-
(O_2)			-	св. 5 до 25	-	<u>±</u> 4
Диоксид углерода (CO ₂)	, ,	от 0 до 25	-	от 0 до 5 включ.	±4	-
		ļ	-	св. 5 до 25	-	±4
Влага (Н2О) -			-	от 0 до 3 включ.	±10	ı
	от 0 до 40	-	св. 3 до 24 включ.	-	±10	
		-	св. 24 до 40	-	±20	
Твердые (взвешенные)	от 0 до 200	-	от 0 до 5 включ.	-	±25	-
частицы 2)			св. 5 до 200	-	-	±25
1)						

¹⁾ Приведенные к верхнему пределу диапазона измерений.

Таблица 3 – Метрологические характеристики газоаналитических каналов системы

Наименование характеристики	Значение
Предел допускаемой вариации показаний, в долях от пределов допускаемой основной погрешности	0,5
Пределы допускаемого изменения выходного сигнала за 24 ч непрерывной работы, в долях от пределов допускаемой основной погрешности	±0,5

²⁾ При условии градуировки анализатора пыли, установленным на объекте, в соответствии с ГОСТ Р ИСО 9096 «Выбросы стационарных источников. Определение массовой концентрации твердых частиц ручным гравиметрическим методом»

Продолжение таблицы 3

Наименование характеристики	Значение
Пределы допускаемой дополнительной погрешности при изменении температуры окружающей среды на каждые 10 °C от номинального значения температуры +20 °C в пределах условий эксплуатации, в долях от предела	
допускаемой основной погрешности	±0,5
Предел допускаемого времени установления выходного сигнала $(T_{0,9})$, с	100
Пределы допускаемой приведенной погрешности спектрального коэффициента направленного пропускания, %	±2
Пределы дополнительной погрешности от влияния неизмеряемых компонентов в анализируемой газовой смеси, в долях от пределов	- 5 5
допускаемой основной погрешности	±0,5
Нормальные условия измерений: - температура окружающего воздуха, °С - относительная влажность окружающего воздуха, % - диапазон атмосферного давления, кПа	от +15 до +25 от 30 до 80 от 98 до 104,6

Таблица 4 – Диапазоны измерений и пределы допускаемой погрешности газоаналитических каналов системы в условиях эксплуатации

каналов системы	в условиях эксплуата	ции			
Определяемый	Диапазон измерений		Пределы допускаемой погрешности, %		
компонент	массовой концентрации, $M\Gamma/M^3$	объемной доли, %	приведенной	относительной	
SO_2	от 0 до 120 включ. св. 120 до 2500	-	±25 -	$\pm (25,66-0,0055 \Box) \overset{+}{\mathbb{C}}^{0}$	
NO	от 0 до 150 включ. св.150 до 3000	-	±25 -	±(25,7–0,0046 \(\) \(\) \(\) \(\)	
NO_2	от 0 до 20 включ. св. 20 до 500	-	±25 -	±(25,42- 0,0208□)¢)	
NO_{x} (в пересчете на NO_{2})	от 0 до 180 включ. св.180 до 4500	-	±25 -	±(25,42- 0,0023 \(\text{)}\)	
СО	от 0 до 15 включ. св. 15 до 300 включ.	-	±25 -	±(25,7-0,0456 \(\) \(\) \(\) \(\)	
	-	от 0 до 3 включ.	±20	-	
Влага (H ₂ O)	-	св. 3 до 24 включ.	-	±20	
	-	св. 24 до 40	-	±25	

¹⁾ С- измеренное значение массовой концентрации, мг/м³

Массовая концентрация оксидов азота (C_{NOx}) в пересчете на NO_2 рассчитывается по формуле:

$$C_{NOx}=C_{NO2}+1,53\cdot C_{NO},$$

где C_{NO2} и C_{NO} - измеренные значения массовой концентрации диоксида азота и оксида азота, мг/м 3 , соответственно.

 $^{^{2)}}$ Сумма оксидов азота NO_x (в пересчете на NO_2) является расчетной величиной.

Таблица 5 - Метрологические характеристики измерительных каналов параметров газового потока в условиях эксплуатации

Определяемый параметр ¹⁾	Единицы измерений	Диапазон измерений ²⁾	Пределы допускаемой погрешности
Температура газовой пробы	°C	от -200 до +600	±(2,0+0,002 t) °C (aốc.)
Давление/разрежение	кПа	от -15 до +5	±1,5 % (привед.)
Объемный расход ³⁾	м ³ /ч	от $0{,}08{\!\!r}0^6$ до $2{,}00{\!\!r}0^6$	±8 % (отн.)

Номинальная цена единицы наименьшего разряда измерительных каналов: температуры 0,1 °C, давления 0,1 кПа, расхода 1 м³/ч.

Таблица 6 – Основные технические характеристики системы

таолица о – Основные технические характеристики системы	
Наименование характеристики	Значение
Время прогрева, мин, не более	60
Напряжение питания от сети переменного тока частотой (50±1) Гц, В	от 207 до 253
Габаритные размеры, мм, не более:	
- длина	6110
- ширина	2380
- высота	2630
Масса, кг, не более	4000
Потребляемая мощность, В-А, не более	26000
Средняя наработка на отказ (при доверительной вероятности Р=0,95), ч	24000
Средний срок службы, лет	10
Условия окружающей среды	
- диапазон температуры, °С	от -40 до +40
- диапазон атмосферного давления, кПа	от 84,0 до 106,7;
- относительная влажность (при температуре +35 °C и (или) более	
низких температурах (без конденсации влаги)), %	от 30 до 98
Условия эксплуатации (внутри контейнеров):	
- диапазон температуры, °С	от +5 до +35
- относительная влажность (без конденсации влаги), %, не более	95
- диапазон атмосферного давления, кПа	от 84,0 до 106,7
Параметры анализируемого газа на входе в пробоотборный зонд:	
- температура, °С, не более	+250

Знак утверждения типа

наносится на табличку системы внутри контейнера или на титульный лист Руководства по эксплуатации.

²⁾ Диапазон показаний по каналу объемного расхода: от 0 до $2 \cdot 10^6$ м³/ч.

³⁾ Расчетное значение с учетом данных, приведенных в «Экспертном заключении на конструк- цию измерительного трубопровода за дымососом энергоблока № 4 «Системы непрерывного контроля газовых выбросов энергоблока № 4 для нужд филиала «Рефтинская ГРЭС ПАО Энел ОГК-5», выданном ФГУП «ВНИИР» 26.08.2014 г., и при скорости газового потока от 0,3 до 40 м/с.

Комплектность средства измерений

Таблица 7 – Комплектность системы

Наименование, изготовитель	Обозначение	Количество			
Система СНКГВ-М в составе:	зав. № 513				
Термопреобразователь сопротивления серии TR	-	6 шт.			
модификации TR10-B					
Преобразователь давления измерительный Cerabar S	-	4 шт.			
PMP75					
Расходомер газа ультразвуковой FLOWSICK 100 PR	-	2 шт.			
Газоанализатор MCA 10 фирмы Dr.Fodisch		2 шт.			
Umweltmesstechnik AG					
Газоаналитический шкаф, ООО «Евротехлаб»	ETL Multigas	2 шт.			
Система подготовки сжатого воздуха, ООО	ETL.152.010.4201	1 шт.			
«Евротехлаб»					
Пылемер DUSTHUNTER SP100		2 шт.			
ШКАФ ПТК 04HNA00GH001, ООО «Энрима»		1 шт.			
ШКАФ АРМ ССОД 04НNA00GH003, ООО		1 шт.			
«Энрима»					
ШКАФ АВР 04HNA00GH002, ООО «Энрима»		1 шт.			
Контейнер специализированный, ООО «Энрима»		1 шт.			
Программное обеспечение					
Встроенное ПО контроллера, S7_CEMS2 v1.3, ООО	S7_ CEMS2	1 экз.			
«Энрима»					
Автономное ПО APM, APM_CEMS v1.3, OOO	APM _ CEMS	1 экз.			
«Энрима»					
Документация					
Руководство по эксплуатации	ETL.152.010.9000/2018.PЭ	1 экз.			
Руководство оператора	2313.АТХ.01.ЭД.РО	1 экз.			
Паспорт формуляр	ETL.152.010.9000/2018.ΠΦ	1 экз.			
Методика поверки	МП-242-2298-2019	1 экз.			

Поверка

осуществляется по документу МП-242-2298-2019 «ГСИ. Система непрерывного контроля газовых выбросов энергоблока № 4 филиала Рефтинская ГРЭС ПАО «Энел Россия» (СНКГВ-М блока №4 Рефтинская ГРЭС). Методика поверки», утвержденному ФГУП «ВНИИМ им. Д.И. Менделеева» 31 января 2019 г.

Основные средства поверки:

- стандартные образцы состава газовых смесей: Γ CO 10540-2014 (O_2/N_2), Γ CO 10546-2014 (NO/N_2), Γ CO 10546-2014 (CO/N_2), Γ CO 10546-2014 (O_2/N_2) в баллонах под давлением;
- комплекс переносной измерительный КПИ (регистрационный № 69364-17) или средства измерений и вспомогательные устройства в соответствии с МИ «М-МВИ-276-17 «Методика измерений массовой концентрации диоксида серы и окислов азота в промышленных выбросах», регистрационный № ФР.1.31.2017.27953 от 01.11.2017 г. (спектрофотометр серии UV модель UV-1800, регистрационный № 19387-08);
- генератор влажного газа эталонный «Родник-4М» (регистрационный № 48286-11) или средства измерений и вспомогательные устройства в соответствии с МИ «М-МВИ-277-17. Методика измерений массовой концентрации паров воды в промышленных выбросах» регистрационный № ФР.1.31.2018.30255 (весы лабораторные электронные с пределами допускаемой абсолютной погрешности ± 15 мг в диапазоне взвешивания от 0,2 до 600 г, например, МЛ-06-1 (регистрационный № 60183-15);

- калибратор многофункциональный портативный Метран 510-ПКМ (регистрационный № 26044-07);
 - манометр грузопоршневой МПА-2,5 (регистрационный номер 47376-11);
- термометр цифровой малогабаритный ТЦМ 9410 Ex/M1 в комплекте с термопреобразователями сопротивления ТТЦ 01-350-1 и ТТЦ 06-1300-1 (регистрационный № 32156-06);
- рабочий эталон единицы скорости воздушного потока в соответствии с Приказом Федерального агентства по техническому регулированию и метрологии от 29.12.2018 г № 2825 «Об утверждении Государственной поверочной схемой для средств измерений объемного и массового расходов газа», или
- система для определения параметров газопылевого потока GMD 13 (регистрационный № 72736-18) для каналов измерений температуры, давления, скорости газового потока;
- рабочий эталон единицы спектрального коэффициента направленного пропускания в диапазоне значений от 1,9 до 85 % на основе комплекта нейтральных светофильтров КСФ-01 с относительной погрешностью не более $\pm 0,5$ % в соответствии с Приказом Федерального агентства по техническому регулированию и метрологии от 29 января 2016 г. N 41 «Об утверждении Государственного первичного эталона единиц спектральных коэффициентов направленного пропускания, диффузного и зеркального отражений в диапазоне длин волн от 0,2 до 20,0 мкм»;
- рабочий эталон единицы массовой концентрации частиц в аэродисперсных средах с относительной погрешностью не более ± 10 % в соответствии с ГОСТ Р 8.606-2012;
 - пыль инертная марки ПИГ по ГОСТ Р 51569-2000;

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к системе непрерывного контроля газовых выбросов энергоблока № 4 филиала Рефтинская ГРЭС ПАО «Энел Россия» (СНКГВ-М блока №4 Рефтинская ГРЭС)

Приказ Минприроды России № 425 от 07.12.2012 «Об утверждении перечня измерений, относящихся к сфере государственного регулирования обеспечения единства измерений и выполняемых при осуществлении деятельности в области охраны окружающей среды, и обязательных метрологических требований к ним, в том числе показателей точности измерений»

Приказ Федерального агентства по техническому регулированию и метрологии от 29.01.2016 г. N 41 «Об утверждении Государственного первичного эталона единиц спектральных коэффициентов направленного пропускания, диффузного и зеркального отражений в диапазоне длин волн от 0,2 до 20,0 мкм».

Приказ Росстандарта от 14.12.2018 г. № 2664 «Об утверждении государственной поверочной схемы для средств измерений содержания компонентов в газовых и газоконденсатных средах»

ГОСТ Р 50759-95 Анализаторы газов для контроля промышленных и транспортных выбросов. Общие технические условия

ГОСТ Р ИСО 10396-2006 Выбросы стационарных источников. Отбор проб при автоматическом определении содержания газов

ГОСТ 17.2.4.02-81 Охрана природы. Атмосфера. Общие требования к методам определения загрязняющих веществ

Изготовитель

Общество с ограниченной ответственностью «Евротехлаб» (ООО «Евротехлаб»)

ИНН 7806410090

Адрес: 193230, г. Санкт-Петербург, пер. Челиева, д. 13, литер Б, помещ. 216

Телефон/факс: +7 (812) 309-00-77

E-mail: info@evrotechlab.ru

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологии им. Д.И. Менделеева»

Адрес: 190005, г. Санкт-Петербург, Московский пр., д. 19

Телефон: +7 (812) 251-76-01 Факс: +7 (812) 713- 01-14 Web-сайт: <u>www.vniim.ru</u> E-mail: <u>info@vniim.ru</u>

Регистрационный номер RA.RU.311541 в Реестре аккредитованных лиц в области обеспечения единства измерений Росаккредитации.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

А.В. Кулешов

М.п. « ___ » _____2019 г.