ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Блоки датчиков оптические ФСТ-03В1 О

Назначение средства измерений

Блоки датчиков оптические Φ CT-03B1 О предназначены для непрерывного автоматического измерения содержания метана (CH₄), диоксида углерода (CO₂), довзрывоопасных концентраций горючих газов и паров (по пропану C₃H₈), и передачи измеренного значения содержания, сигналов превышения порогов и ошибок по интерфейсу типа A и (или) по аналоговому интерфейсу (4-20) мA.

Описание средства измерений

Принцип действия блоков датчиков оптических ФСТ-03В1 О (далее – блоки датчиков) оптический инфракрасный, основанный на поглощении инфракрасного излучения молекулами определяемого компонента.

Способ отбора пробы – диффузионный.

Блоки датчиков являются стационарными автоматическими одноканальными приборами непрерывного действия.

Конструктивно корпус блока датчика выполнен из угленаполненного полиамида и имеет цилиндрическую форму; в корпусе размещены электронные модули: плата обработки, сенсор и модуль питания. Сверху блока датчика расположен разъем для подключения к устройству отображения концентрации по интерфейсу типа А, либо подключение питания блока датчика и аналогового интерфейса (4-20) мА. Снизу блока датчика расположена решетка, через которую газовая проба попадает на газочувствительный сенсор. В блоках датчиках для тяжелых условий эксплуатации газочувствительный сенсор расположен в микрокамере с подогревом.

Варианты исполнения блоков датчиков закодированы характеристическими цифрами в наименовании вида Φ CT-03B1 $O._{yz}$ XX, где:

- характеристическая цифра (у) обозначает конструктивные особенности блока датчиков: 0 исполнение для помещений: IP54, группа исполнения C4 по ГОСТ Р 52931-2008 (УХЛ 2 по ГОСТ 15150)
- 1 исполнение для тяжелых условий эксплуатации: IP 67, группа исполнения Д3 по ГОСТ Р 52931-2008 (УХЛ 1 по ГОСТ 15150);
 - характеристическая цифра (z) обозначает интерфейсы блока датчиков:
- 0 только базовый А-интерфейс для связи с устройством отображения концентрации (УОК)
 - 1 дополнительно наличие интерфейса (4-20) мА.
 - XX обозначение определяемого компонента (CH₄, CO₂, Ex)

Блоки датчика обеспечивают выполнение следующих функций:

- измерение содержания определяемого компонента;
- контроль превышения установленных порогов сигнализации;
- передачу результатов измерения содержания, сигналов превышения порогов и ошибок по интерфейсу типа A;
 - хранение градуировочных коэффициентов и значений порогов сигнализации;
- имитацию изменения содержания определяемого компонента и возникновения ошибок в тест-режиме.

Общий вид датчиков и места пломбировки от несанкционированного доступа приведены на рисунке 1.

а) БД ФСТ-03В1 О.01

б) БД ФСТ-03В1 О.11

Рисунок 1 — Общий вид блоков датчиков (места пломбировки от несанкционированного доступа расположены под верхней крышкой и обозначены стрелками)

Программное обеспечение

Блоки датчика имеют встроенное программное обеспечение, разработанное изготовителем специально для решения задачи непрерывного автоматического измерения содержания метана, диоксида углерода, довзрывоопасных концентраций горючих газов и паров (по пропану), и передачи измеренного значения содержания, сигналов превышения порогов и ошибок по интерфейсу типа А и (или) по аналоговому интерфейсу (4-20) мА

Встроенное ПО блоков датчика выполняет следующие функции:

- прием и обработку сигналов от первичного измерительного преобразователя;
- формирование сигналов превышения порогов сигнализации (только по интерфейсу типа A);
 - диагностика состояния аппаратной части и формирование сигналов ошибок.

Встроенное ПО блоков датчиков реализует следующие расчетные алгоритмы:

- непрерывное сравнение текущих результатов измерений содержания определяемых компонентов с заданными (пороговыми) значениями и формирование соответствующих сигналов.

ПО блоков датчика идентифицируется посредством отображения номера версии ПО и цифрового идентификатора ПО на устройстве отображения концентрации (УОК) в режиме прогрева БД.

Конструктивно блоки датчиков имеют полную защиту программного обеспечения от преднамеренных или непреднамеренных изменений, реализованную изготовителем на этапе производства блоков датчика путем установки системы защиты микроконтроллера от чтения и записи. Уровень защиты — «низкий» по Р 50.2.077-2014.

Идентификационные данные встроенного ПО приведены в таблице 1.

Таблица 1- Идентификационные данные встроенного программного обеспечения

тионици т пдентифи	таолица т тідентификационные данные встроенного программного обеспе тения					
Идентификационные	значение (в зависимости от исполнения)			лнения)		
данные (признаки)	ФСТ-03В1 О.уz СН ₄		ФСТ-03В1 О.уz Ех		ФСТ-03В1 О.уz CO ₂	
	Микро- процессор тип 1	Микро- процессор тип 2	Микро- процессор тип 1	Микро- процессор тип 2	Микро- процессор тип 1	Микро- процессор тип 2
Идентификационное наименование ПО	BD_CH4op t_v1_2.hex		BD_EXopt _v1_2.hex	BD_EXopt _v2_2.hex	BD_CO2op t_v1_2.hex	BD_CO2op t_v2_2.hex
Номер версии (идентификационный номер) ПО		2.2	1.2	2.2	1.2	2.2
Цифровой идентификатор программного обеспечения (контрольная сумма исполняемого кода)	алгоритм CRC-16	0x58FF, алгоритм CRC-16	0x8575, алгоритм CRC-16	0хDA76, алгоритм CRC-16	0х5A00, алгоритм CRC-16	0x82F7, алгоритм CRC-16

Примечание – номер версии ПО должен быть не ниже указанного в таблице. Значения контрольных сумм приведены только для ПО версий, указанных в таблице.

Метрологические и технические характеристики

Таблица 2 – Основные метрологические характеристики блоков датчика

Наименование определяемого компонента / вариант исполнения	Диапазон измерений (диапазон показаний) содержания определяе-	погрешности ² не температур +25 °C		Номинальное время установления показаний $T_{0,9}$, с, не
	мого компонента	абсолютной	относи- тельной, %	более
Метан (CH ₄) / БД ФСТ-03В1 О. _{0z}	от 0 до 5,00 % об.д.	±0,1	±5	40
Метан (СН ₄) / БД ФСТ-03В1 О. _{1z}	(от 0 до 99,9 % об. д.)	% об.д.	±3	70
Диоксид углерода (CO ₂) / БД ФСТ-03В1 О. _{0z}	от 0 до 2,5 % об.д. (от 0 до 99,9	±0,1	±5	90
Диоксид углерода (CO_2) / БД ФСТ-03B1 O_{1z}	% об.д.)	об. д, %	<u> </u>	150
Довзрывоопасные концентрации горючих газов и паров $(Ex)^{1}$ / БД ФСТ-03В1 O_{0z}	от 0 до 99,9 % НКПР	±2,0	±5	80
Довзрывоопасные концентрации горючих газов и паров $(Ex)^{1}$ / БД ФСТ-03В1 О.1z	(от 0 до 999 % НКПР)	% НКПР	-1	120

 $[\]overline{\ \ \ }^{1)}$ Поверочный компонент пропан (C_3H_8). Значение НКПР в соответствии с ГОСТ IEC 60079-29-1-2013. $\overline{\ \ \ \ \ }^{2)}$ Выбирают большее значение.

Таблица 3 – Метрологические характеристики блоков датчика в условиях эксплуатации

таолица 3 – Метрологич	еские характеристи	ки олоков датчика в услови			
Наименование опреде-	Диапазон темпе-	Пределы допускаемой погрешности 2) в диапазо-			
ляемого компонента /	ратур при экс-	нах температур эксплуатации			
вариант исполнения	плуатации, °С	абсолютной	относительной, %		
Метан (СН ₄) /		в диапазонах от -10 до +	в диапазонах от -10 до +20 $^{\circ}$ С и от +25до +40 $^{\circ}$ С		
БД ФСТ-03В1 О. _{0z}	от -40 до +50	±0,2 % об.д.	±10		
	01 -40 до +30	в диапазонах от -40 до -1	10 °C и от +40 до +50 °C		
		±0,4 об. д., %	±20		
Метан (СН ₄) /		в диапазонах от -10 до +	20 °C и от +25до +40 °C		
БД ФСТ-03В1 О. _{1z}	от -45 до +50	±0,2 % об.д.	±10		
	01 -43 до +30	в диапазонах от -45 до -	10 °C и от +40 до +50 °C		
		±0,4 об. д., %	±20		
Диоксид углерода					
(CO_2) /	от -10 до +40				
БД ФСТ-03В1 О. _{0z}		±0,2 % об.д.	±10		
Диоксид углерода		±0,2 % об.д.	-10		
(CO_2) /	от -10 до +40				
БД ФСТ-03В1 О. _{1z}					
Довзрывоопасные кон-		в диапазонах от -10 до +	20 °C и +25°С до +40 °С		
центрации горючих	от -40 до +50	±5,0 % НКПР	±10		
газов и паров $(Ex)^{1}$	01 -40 до +30	в диапазонах от -40 до -1	10 °C и от +40 до +50 °C		
/БД ФСТ-03В1 О. _{0z}		±10,0 % НКПР	±20		
Довзрывоопасные кон-		в диапазонах от -10 до +	20 °C и +25°C до +40 °C		
центрации горючих	от -45 до +50	±5,0 % НКПР	±10		
газов и паров (Ex) 1) /	01 -43 до +30	в диапазонах от -45 до -1	10 °С и от +40 до +50 °С		
БД ФСТ-03В1 О. _{1z}		±10,0 % НКПР	±20		

 $[\]overline{^{(1)}}$ Поверочный компонент пропан (C₃H₈). Значение НКПР в соответствии с ГОСТ IEC 60079-29-1-2013.

Таблица 4 – Пороги срабатывания сигнализации

Наименование опре-	Содержание определяемого		Диапазон уста-	Время сраба-
деляемого компо-	компонента, соо	тветствующее	новки порогов,	тывания сигна-
нента	порогу срабатывания (заво-		содержание оп-	лизации
	дская установка)		ределяемого	
	Порог 1	Порог 2	компонента 2)	
Метан (СН ₄)	0,44 % об.д.	4,40 % об.д.	от 0,01 до 5,00 %	Не более Т0,9,
	(10 % НКПР)	(100 %HKПP)	об.д.	указанного в
Диоксид углерода	0,50 % об.д.	1,40 % об.д.	от 0,01 до 2,50 %	таблице 2 для
(CO_2)			об. д.	соответствую-
Довзрывоопасные кон-	10,0 % НКПР	99,9 % НКПР	от 0,1 до 99,9 %	щего исполне-
центрации горючих			НКПР	ния блоков дат-
газов и паров $(Ex)^{1}$				чика

 $[\]overline{^{(1)}}$ Поверочный компонент пропан (C₃H₈). Значение НКПР в соответствии с ГОСТ IEC 60079-29-1-2013.

²⁾ Выбирают большее значение.

 $^{^{2)}}$ Предусмотрена возможность установки порогов сигнализации потребителем в диапазоне измерения блока датчика. Шаг задания порога срабатывания (дискретность):

⁻ по метану, диоксиду углерода 0,01 % об.д.;

⁻ по довзрывоопасным концентрациям горючих газов и паров 0,1 % НКПР.

Таблица 5 – Метрологические характеристики блоков датчика

Наименование характеристики	Значение
Время установления рабочего режима, мин, не более:	
- Метан (СН ₄)	3
- Диоксид углерода (CO ₂)	5
- Довзрывоопасные концентрации горючих газов и паров (Ех)	5
Нормальные условия измерений:	
- диапазон температуры окружающей среды, °С:	от +20 до +25
- диапазон относительной влажности окружающей	
среды, %	до 95
- диапазон атмосферного давления, кПа	от 84,0 до 106,7

Таблица 6 – Основные технические характеристики блоков датчика

таолица 6 – Основные технические характеристики олоков датч	
Наименование характеристики	Значение
Напряжение питания постоянным током, В	от 6,5 до 13
Потребляемая мощность, ВА, не более	2,5
Габаритные размеры, мм, не более:	
длина	80
ширина	60
высота	60
Масса, кг, не более	0,3
Средний срок службы, лет	10
Средняя наработка на отказ, ч	30000
Степень защиты корпуса по ГОСТ 14254-2015:	
- ФСТ-03В1 О. _{0z}	IP 54
- ФСТ-03В1 О. _{1z}	IP 67
Блоки датчиков выполнены во взрывозащищенном исполне-	
нии, соответствуют ГОСТ 31610.0-2014, ГОСТ 31610.11-2014,	
маркировка взрывозащиты	lEx ib IIB T6 Gb
Условия эксплуатации:	
- диапазон температуры окружающей среды, °С	согласно таблице 3
- диапазон относительной влажности при тем-	
пературе +35 °С, %	до 95
- атмосферное давление, кПа	от 84,0 до 106,7

Знак утверждения типа

наносится типографским способом на титульный лист руководства по эксплуатации и на табличку на крышке корпуса блока датчика.

Комплектность средства измерений

Таблица 7 - Комплекты поставки БД исполнения для помещений (IP 54)

Taomique / Trommileribi nociabri ba nenosmenis am nomemer	11111 (11 0 1)	
Наименование	Обозначение	Количество
	Ooosha lenne	штук
ФСТ-03В1 О.00 СН ₄ (0) - оптический	APT232119	1
ФСТ-03В1 О. ₀₁ СН ₄ (0) - оптический, интерфейс 4-20 мА	APT2321190	1
ФСТ-03В1 О.00 СО2 (0) - оптический	APT232160	1
ФСТ-03В1 O. ₀₁ CO ₂ (0) - оптический, интерфейс 4-20 мА	APT2321600	1
ФСТ-03В1 О.00 Ex (0) - оптический	APT232120	1
ФСТ-03В1 О. ₀₁ Ex (0) - оптический, интерфейс 4-20 мА	APT2321200	1
Примечание - соединительные кабели «БПС – БД» в комплект поставки не входят.		

Таблица 8 - Аксессуары БД исполнения для помещений

Наименование	Обозначение	Количество штук	
Розетка РҮ07-04Т	-	1	
Кронштейн с хомутом *, крепеж	ПР05-10.50.50.500	1	
Паспорт БД	100162047.039 ПС	1	
Блоки датчиков оптические ФСТ-03В1 О.	МРБ МП. 2841-	1	
Методика поверки	2018 с изм. № 1	1	
Насадка	ПР12-12.20.003	по заказу	
Упаковка	-	по заказу	
(УОК) Блок питания и сигнализации ФСТ-03В1 – U 230 В	-	по заказу	
(УОК) Тестер A- интерфейса – U +5 B \pm 5 %;	-	по заказу	
(УОК) Модуль калибровки — Ue +5 B ±5 %.	-	по заказу	
* Кронштейн по умолчанию для данного исполнения БД			

Таблица 9 - Комплекты поставки БД для тяжелых условий эксплуатации (IP 67)

Наименование	Обозначение	Количество
	Обозначение	штук
ФСТ-03В1 О. ₁₀ СН ₄ (1) – оптический	APT232219	1
ФСТ-03В1 О. ₁₁ СН ₄ (1) – оптический, интерфейс 4-20 мА	APT2322190	1
Φ CT-03B1 O. ₁₀ CO ₂ (1) – оптический	APT232260	1
Φ CT-03B1 O. ₁₁ CO ₂ (1) – оптический, интерфейс 4-20 мА	APT2322600	1
ФСТ-03В1 О. ₁₀ Ex (1) – оптический	APT232220	1
ФСТ-03В1 О. ₁₁ Ex (1) – оптический, интерфейс 4-20 мА	APT2322200	1
Примечание - соединительные кабели «БПС – БД» в комплект поставки не входят.		

Таблица 10 - Аксессуары БД для тяжелых условий эксплуатации

Наименование	Обозначение	Количество штук	
розетка РУ07-04Т	-	1	
Кронштейн с хомутом *, крепеж	ПР 17-10.01.000	1	
Паспорт БД	100162047.039 ПС	1	
Блоки датчиков оптические ФСТ-03В1 О.	МРБ МП. 2841-2018 с	1	
Методика поверки	изм. № 1	1	
Козырек водоотводящий	ПР 17-10.02.000	по заказу	
Насадка	ПР12-12.20.003	по заказу	
Упаковка	-	по заказу	
(УОК) Блок питания и сигнализации ФСТ-03В1 – U 230 В	-	по заказу	
(УОК) Тестер A- интерфейса – U +5 B ±5 %; -		по заказу	
(УОК) Модуль калибровки – Ue +5 B ±5 %.	-	по заказу	
* Кронштейн по умолчанию для данного исполнения БД			

Поверка

осуществляется по документу МРБ МП. 2841-2018 «Блоки датчиков оптические ФСТ-03В1 О. Методика поверки», утвержденному «БелГИМ» «01» декабря 2018 г. с изменением №1 от «01» августа 2019 г.

Основные средства поверки:

- стандартные образцы состава газовые смеси метан – воздух, метан - азот, пропан – азот, диоксид углерода – воздух в баллонах под давлением.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых блоков датчиков с требуемой точностью.

Знак поверки наносится на корпус блоков датчиков, как указано на рисунке 1, или на свидетельство о поверке.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к блокам датчиков оптическим ФСТ-03В1 О

Приказ Федерального агентства по техническому регулированию и метрологии от 14 декабря 2018 № 2664 «Об утверждении Государственной поверочной схемы для средств измерений содержания компонентов в газовых и газоконденсатных средах».

ТУ ВҮ 100162047.039-2018 «Блоки датчиков оптические ФСТ-03В1 О. Технические условия»

Изготовитель

Научно-производственное общество с дополнительной ответственностью « Φ APMЭК» (НП ОДО « Φ APMЭК»)

УНП 100162047

Адрес: 220013, Республика Беларусь, г. Минск, ул. Кульман, 2-2

Телефон/факс: (017) 2-92-61-61 Web-сайт https://pharmec.by E-mail sales@pharmec.by

Испытательный центр

Экспертиза проведена Федеральным государственным унитарным предприятием «Всероссийский научно-исследовательский институт метрологии им. Д.И. Менделеева»

Адрес: 190005, г. Санкт-Петербург, Московский пр., 19

Телефон: (812) 251-76-01, факс: (812) 713-01-14

Web-сайт <u>www.vniim.ru</u> E-mail <u>info@vniim.ru</u>

Регистрационный номер RA.RU.311541 в Реестре аккредитованных лиц в области обеспечения единства измерений Росаккредитации.

М.п.

Заместитель
Руководителя Федерального
агентства по техническому
регулированию и метрологии

	А.В. Кулешов
<i>"</i>	 2019 г