ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) АО «ЕВРАЗ Ванадий Тула»

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) АО «ЕВРАЗ Ванадий Тула» (далее – АИИС КУЭ) предназначена для измерений активной и реактивной электроэнергии, автоматизированного сбора, обработки, хранения, формирования отчетных документов и передачи полученной информации заинтересованным организациям в рамках согласованного регламента.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную двухуровневую автоматизированную систему с централизованным управлением и распределенной функцией измерений.

АИИС КУЭ включает в себя следующие уровни:

1-й уровень — измерительно-информационные комплексы (ИИК), включающие в себя измерительные трансформаторы тока (ТТ), измерительные трансформаторы напряжения (ТН) и счетчики активной и реактивной электрической энергии (счетчики), вторичные измерительные цепи и технические средства приема-передачи данных.

2-й уровень – информационно-вычислительный комплекс (ИВК), включающий в себя сервер с программным комплексом (ПК) «Энергосфера», источник точного времени (ИТВ), автоматизированные рабочие места персонала (АРМ), каналообразующую аппаратуру, технические средства для организации локальной вычислительной сети и разграничения прав доступа к информации.

Первичные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности, которые усредняются за период 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мощности.

Электрическая энергия, как интеграл по времени от средней за период 0,02 с мощности, вычисляется для интервалов времени 30 мин.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение мгновенных значений мощности на интервале времени усреднения 30 мин.

Цифровой сигнал с выходов счетчиков по проводным линиям связи через преобразователь интерфейса поступает на сервер, где осуществляется обработка измерительной информации, в частности вычисление электрической энергии и мощности с учетом коэффициентов трансформации ТТ и ТН, формирование и хранение поступающей информации, оформление отчетных документов.

Передача информации от уровня ИВК в программно-аппаратный комплекс АО «АТС» с электронной цифровой подписью субъекта оптового рынка электроэнергии (ОРЭ), в филиал АО «СО ЕЭС» и в другие смежные субъекты ОРЭ осуществляется по каналу связи с протоколом TCP/IP сети Internet в виде хml-файлов установленных форматов в соответствии с приложением 11.1.1 «Формат и регламент предоставления результатов измерений, состояний средств и объектов измерений в АО «АТС», АО «СО ЕЭС» и смежным субъектам» к Положению о порядке получения статуса субъекта оптового рынка и ведения реестра субъектов оптового рынка электрической энергии и мощности.

Результаты измерений электроэнергии передаются в целых числах кВт·ч и соотнесены с единым календарным временем.

АИИС КУЭ имеет систему обеспечения единого времени (СОЕВ), которая включает в себя часы счетчиков, часы сервера, ИТВ. В качестве ИТВ используется ЭКОМ-3000 со встроенным GPS-приемником, обеспечивающим синхронизацию с единым координированным временем UTC.

Сравнение показаний часов сервера и ИТВ, осуществляется 1 раз в 30 мин. Корректировка часов сервера производится при расхождении показаний часов сервера и ИТВ на величину более ± 1 с.

Сравнение показаний часов счетчиков с часами сервера осуществляется 1 раз в 30 мин. Корректировка часов счетчиков производится при расхождении показаний часов счетчиков с часами сервера на величину более ± 2 с.

Журналы событий счетчиков и сервера отображают факты коррекции времени с обязательной фиксацией времени до и после коррекции или величины коррекции времени, на которую было скорректировано устройство.

Программное обеспечение

В АИИС КУЭ используется программный комплекс (ПК) «Энергосфера» версии не ниже 8.0. ПК «Энергосфера» обеспечивает защиту измерительной информации паролями в соответствии с правами доступа. Средством защиты данных при передаче является кодирование данных, обеспечиваемое программными средствами ПК «Энергосфера». Метрологически значимая часть ПК указана в таблице 1. Уровень защиты программного обеспечения от непреднамеренных и преднамеренных изменений – «высокий» в соответствии с Р 50.2.077-2014.

Таблица 1 – Идентификационные данные ПК «Энергосфера»

Идентификационные данные (признаки)	Значение		
Идентификационное наименование ПО	pso_metr.dll		
Номер версии (идентификационный номер) ПО	не ниже 1.1.1.1		
Цифровой идентификатор ПО	CBEB6F6CA69318BED976E08A2BB 7814B		
Алгоритм вычисления цифрового идентификатора ПО	MD5		

Метрологические и технические характеристики

Таблица 2 — Состав измерительных каналов (ИК) АИИС КУЭ и их метрологические характеристики

	1	Измерительные компоненты					Метрологические характеристики ИК	
Но- мер ИК	Наименование точки измерений	TT	ТН	Счетчик	Сервер/ ИТВ	Вид электро- энергии	Границы допускаемой основной относительной погрешности, $(\pm\delta)$ %	Границы допускаемой относительной погрешности в рабочих условиях, (±δ) %
1	2	3	4	5	6	7	8	9
1	ПС 6 кВ №16, РУ-6 кВ, яч. 13	ТПОЛ-10 Кл.т. 0,5 1500/5 Рег. № 1261-59 Фазы: А; С	1 СШ: НТМИ-6-66 Кл.т. 0,5 6000/100 Рег. № 2611-70 Фазы: ABC	ПСЧ- 4ТМ.05МК.00 Кл.т. 0,5Ѕ/1,0 Рег. № 50460-18		Актив- ная Реактив- ная	1,3 2,5	3,3 5,6
2	ПС 6 кВ №16, РУ-6 кВ, яч. 17	ТПОЛ-10 Кл.т. 0,5 1000/5 Рег. № 1261-59 Фазы: А; С	1 СШ: HТМИ-6-66 Кл.т. 0,5 6000/100 Per. № 2611-70 Фазы: ABC	ПСЧ- 4ТМ.05МК.00 Кл.т. 0,5Ѕ/1,0 Рег. № 50460-18	Dell PowerEdge 2950	Актив- ная Реактив- ная	1,3 2,5	3,3 5,6
3	ПС 6 кВ №16, РУ-6 кВ, яч. 18	ТПОЛ-10 Кл.т. 0,5 1000/5 Рег. № 1261-59 Фазы: А; С	2 СШ: HТМИ-6-66 Кл.т. 0,5 6000/100 Рег. № 2611-70 Фазы: ABC	ПСЧ- 4ТМ.05МК.00 Кл.т. 0,5Ѕ/1,0 Рег. № 50460-18	ЭКОМ- 3000 Per. № 17049-04	Актив- ная Реактив- ная	1,3 2,5	3,3 5,6
4	ПС 6 кВ №16, РУ-6 кВ, яч. 25	ТПОЛ-10 Кл.т. 0,5 1500/5 Рег. № 1261-59 Фазы: А; С	2 СШ: HТМИ-6-66 Кл.т. 0,5 6000/100 Per. № 2611-70 Фазы: ABC	ПСЧ- 4ТМ.05МК.00 Кл.т. 0,5Ѕ/1,0 Рег. № 50460-18		Актив- ная Реактив- ная	1,3 2,5	3,3 5,6

Продолжение таблицы 2

	Z	3	4	5	6	7	8	9
5	ПС 6 кВ №16, РУ-6 кВ, яч. 31	ТПЛ-10УЗ Кл.т. 0,5 300/5 Рег. № 1276-59 Фазы: А; С	2 СШ: НТМИ-6-66 Кл.т. 0,5 6000/100 Рег. № 2611-70 Фазы: ABC	СЭТ-4ТМ.03М.01 Кл.т. 0,5S/1,0 Рег. № 36697-12	Dell PowerEdge 2950 ЭКОМ- 3000 Рег. № 17049-04	Актив- ная Реактив- ная	1,3 2,5	3,3 5,6

Пределы допускаемой погрешности СОЕВ ±5 с.

Примечания:

- 1 В качестве характеристик погрешности ИК установлены границы допускаемой относительной погрешности ИК при доверительной вероятности, равной 0,95.
- 2 Характеристики погрешности ИК указаны для измерений активной и реактивной электроэнергии на интервале времени 30 мин.
 - 3 Погрешность в рабочих условиях указана для тока 5 % от $I_{\text{ном}}$; $\cos j = 0.8$ инд.
- 4 Допускается замена ТТ, ТН и счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в таблице 2, при условии, что предприятие-владелец АИИС КУЭ не претендует на улучшение указанных в таблице 2 метрологических характеристик. Допускается замена ИТВ на аналогичное утвержденного типа, а также замена сервера без изменения используемого ПО (при условии сохранения цифрового идентификатора ПО). Замена оформляется актом в установленном собственником АИИС КУЭ порядке. Акт хранится совместно с настоящим описанием типа АИИС КУЭ как его неотъемлемая часть.

Таблица 3 – Основные технические характеристики ИК

Наименование характеристики	Значение
Количество ИК	5
Нормальные условия:	
параметры сети:	
напряжение, % от Ином	от 95 до 105
ток, % от Іном	от 5 до 120
коэффициент мощности соѕф	0,9
частота, Гц	от 49,8 до 50,2
температура окружающей среды, °С	от +15 до +25
Условия эксплуатации:	
параметры сети:	
напряжение, % от Uном	
ток, % от Іном	от 90 до 110
коэффициент мощности соѕф	от 5 до 120
частота, Гц	от 0,5 до 1,0
температура окружающей среды в месте расположения ТТ и ТН, °С	от 49,6 до 50,4
температура окружающей среды в месте расположения счетчиков,	от -40 до +40
$^{\circ}\mathrm{C}$	от +5 до +35
температура окружающей среды в месте расположения сервера, °С	от +10 до +30
Надежность применяемых в АИИС КУЭ компонентов:	
для счетчиков:	
среднее время наработки на отказ, ч, не менее	165000
среднее время восстановления работоспособности, ч	2
для ИТВ:	
среднее время наработки на отказ, ч, не менее	75000
среднее время восстановления работоспособности, ч	24
для сервера:	
среднее время наработки на отказ, ч, не менее	70000
среднее время восстановления работоспособности, ч	1
Глубина хранения информации:	
для счетчиков:	
тридцатиминутный профиль нагрузки в двух направлениях,	
сут, не менее	113
при отключении питания, лет, не менее	40
для сервера:	
хранение результатов измерений и информации состояний	
средств измерений, лет, не менее	3,5

Надежность системных решений:

защита от кратковременных сбоев питания сервера с помощью источника бесперебойного питания;

резервирование каналов связи: информация о результатах измерений может передаваться в организации-участники оптового рынка электроэнергии по электронной почте.

В журналах событий фиксируются факты:

- журнал счетчика: параметрирования; пропадания напряжения; коррекции времени в счетчике.
- журнал сервера: параметрирования; пропадания напряжения; коррекции времени в счетчике и сервере;

пропадание и восстановление связи со счетчиком.

Защищенность применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:

счетчика электрической энергии; промежуточных клеммников вторичных цепей напряжения;

промежуточных клеммников вторичных цепеи напряжени

испытательной коробки;

сервера.

- защита на программном уровне информации при хранении, передаче, параметрировании:

счетчика электрической энергии;

сервера.

Возможность коррекции времени в:

счетчиках электрической энергии (функция автоматизирована);

сервере (функция автоматизирована).

Возможность сбора информации:

о состоянии средств измерений;

о результатах измерений (функция автоматизирована).

Цикличность:

измерений 30 мин (функция автоматизирована);

сбора не реже одного раза в сутки (функция автоматизирована).

Знак утверждения типа

наносится на титульные листы эксплуатационной документации на АИИС КУЭ типографским способом.

Комплектность средства измерений

В комплект поставки входит техническая документация на АИИС КУЭ и на комплектующие средства измерений.

Комплектность АИИС КУЭ представлена в таблице 4.

Таблица 4 — Комплектность АИИС КУЭ

Наименование	Обозначение	Количество, шт./экз.
Трансформаторы тока	ТПОЛ-10	8
Трансформаторы тока проходные с литой изоляцией	ТПЛ-10УЗ	2
Трансформаторы напряжения	НТМИ-6-66	2
Счетчики электрической энергии многофункциональные	ПСЧ-4ТМ.05МК	4
Счетчики электрической энергии многофункциональные	СЭТ-4TM.03М	1
Устройства сбора и передачи данных	ЭКОМ-3000	1
Сервер	Dell PowerEdge 2950	1
Методика поверки	МП ЭПР-186-2019	1
Формуляр	ЭНПР.411711.022.ФО	1

Поверка

осуществляется по документу МП ЭПР-186-2019 «Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) АО «ЕВРАЗ Ванадий Тула». Методика поверки», утвержденному ООО «ЭнергоПромРесурс» 13.08.2019 г.

Основные средства поверки:

- средства поверки в соответствии с нормативными документами на средства измерений, входящие в состав АИИС КУЭ;

- радиочасы МИР РЧ-02, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS) (регистрационный номер в Федеральном информационном фонде 46656-11);
- анализатор количества и показателей качества электрической энергии AR.5L (регистрационный номер в Федеральном информационном фонде 44131-10);
- вольтамперфазометр ПАРМА ВАФ®-А (регистрационный номер в Федеральном информационном фонде 22029-10).

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке АИИС КУЭ.

Сведения о методиках (методах) измерений

приведены в документе «Методика измерений электрической энергии с использованием АИИС КУЭ AO «ЕВРАЗ Ванадий Тула», свидетельство об аттестации N 215/RA.RU.312078/2019.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) AO «ЕВРАЗ Ванадий Тула»

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения

Изготовитель

Общество с ограниченной ответственностью «ЭнергоПромРесурс» (ООО «ЭнергоПромРесурс»)

ИНН 5024145974

Адрес: 143443, Московская обл., г. Красногорск, мкр. Опалиха, ул. Ново-Никольская, д. 57, офис 19

Телефон: (495) 380-37-61

E-mail: energopromresurs2016@gmail.com

Испытательный центр

Общество с ограниченной ответственностью «ЭнергоПромРесурс» (ООО «ЭнергоПромРесурс»)

Адрес: 143443, Московская обл., г. Красногорск, мкр. Опалиха, ул. Ново-Никольская, д. 57, офис 19

Телефон: (495) 380-37-61

E-mail: energopromresurs2016@gmail.com

Аттестат аккредитации ООО «ЭнергоПромРесурс» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.312047 от 26.01.2017 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

А.В. Кулешов