ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии ООО «Газпром энерго» Сургутский завод стабилизации конденсата

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии ООО «Газпром энерго» Сургутский завод стабилизации конденсата (далее – АИИС КУЭ) предназначена для измерений приращений активной и реактивной электрической энергии, потребленной и переданной за установленные интервалы времени, сбора, обработки, хранения и передачи полученной информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, многоуровневую систему с централизованным управлением и распределенной функцией измерений.

АИИС КУЭ состоит из трех уровней:

- 1-й уровень измерительно-информационные комплексы (ИИК), включающие в себя измерительные трансформаторы напряжения (ТН), измерительные трансформаторы тока (ТТ), многофункциональные счетчики активной и реактивной электрической энергии (далее счетчики), вторичные измерительные цепи и технические средства приема-передачи данных;
- 2-й уровень информационно-вычислительный комплекс электроустановки (ИВКЭ), включающий в себя устройство сбора и передачи данных (УСПД), устройство синхронизации системного времени (УССВ), автоматизированные рабочие места оператора, программное обеспечение (ПО) и технические средства приема-передачи данных;
- 3-й уровень информационно-вычислительный комплекс (ИВК) центр сбора и обработки информации ООО «Газпром энерго» (далее ЦСОИ), выполненный на основе серверного оборудования промышленного исполнения и работающего под управлением программного обеспечения из состава ИВК «АльфаЦЕНТР» (Рег. номер 44595-10). ЦСОИ включает в себя каналообразующую аппаратуру, серверы баз данных (БД) и автоматизированные рабочие места ООО «Газпром энерго» и АРМ АО «Газпром энергосбыт».

ИИК, ИВКЭ, ИВК, технические средства приема-передачи данных и линии связи образуют измерительные каналы (ИК).

Первичные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям измерительных цепей поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной, реактивной и полной мощности, которые усредняются за период 0,02 с. Измерительная информация на выходе счетчика без учета коэффициента трансформации:

- активная и реактивная электрическая энергия, как интеграл по времени от средней за период 0,02 с активной и реактивной мощности, соответственно, вычисляемая для интервалов времени 30 минут;
- средняя на интервале времени 30 минут активная и реактивная электрическая мощность.

УСПД в составе ИВКЭ осуществляет:

- один раз в 30 минут опрос счетчиков электрической энергии и сбор результатов измерений;
 - хранение результатов измерений в базе данных;
 - передачу результатов измерений в ИВК.

- синхронизацию (коррекцию) времени в УСПД и коррекцию времени в счетчиках;
- ИВК обеспечивает выполнение следующих функций:
- периодический (один раз в сутки) и по запросу автоматический сбор результатов измерений электрической энергии;
- автоматический сбор данных о состоянии средств измерений и состоянии объектов измерений;
 - хранение не менее 3,5 лет результатов измерений и журналов событий;
- автоматический сбор результатов измерений после восстановления работы каналов связи, восстановления питания;
- перемножение результатов измерений, хранящихся в базе данных, на коэффициенты трансформации TT и TH;
 - формирование отчетных документов;
- ведение журнала событий с фиксацией изменений результатов измерений, осуществляемых в ручном режиме, изменений коэффициентов ТТ и ТН, синхронизации (коррекции) времени с указанием времени до и после синхронизации (коррекции), пропадания питания, замены счетчика, событий, отраженных в журналах событий счетчиков;
 - конфигурирование и параметрирование технических средств ИВК;
 - сбор и хранение журналов событий счетчиков;
 - ведение журнала событий ИВК;
- синхронизацию времени в сервере БД с возможностью коррекции времени в счетчиках электроэнергии и УСПД;
- аппаратную и программную защиту от несанкционированного изменения параметров и любого изменения данных;
 - самодиагностику с фиксацией результатов в журнале событий.

ИВК осуществляет автоматический обмен (передачу и получение) результатами измерений и данными коммерческого учета электроэнергии с субъектами оптового рынка электрической энергии и мощности (ОРЭМ), с другими АИИС КУЭ утвержденного типа, а также с инфраструктурными организациями ОРЭМ, в том числе: АО «АТС», АО «СО ЕЭС». Обмен результатами измерений и данными коммерческого учета электроэнергии между информационными системами субъектов оптового рынка и инфраструктурными организациями ОРЭМ осуществляется по электронной почте в виде электронных документов ХМL в форматах 80020, 80030 заверенных электронно-цифровой подписью.

Информационные каналы связи в АИИС КУЭ построены следующим образом:

- посредством интерфейса RS-485, телефонной линии и модемов SHDSL для передачи данных от счетчиков до УСПД;
- посредством спутникового канала связи (основной канал) и телефонных каналов ТЧ связи, сети сотовой связи GSM каналов (резервные каналы) для передачи данных от УСПД до уровня ИВК;
- посредством локальной вычислительной сети интерфейса Ethernet для передачи данных с сервера баз данных на APM;
- посредством наземного канала связи Е1 для передачи данных от уровня ИВК во внешние системы (основной канал);
- посредством спутникового канала для передачи данных от уровня ИВК во внешние системы (резервный канал).

В АИИС КУЭ на функциональном уровне выделена система обеспечения единого времени (СОЕВ), включающая в себя часы ЦСОИ, УСПД и счетчиков. ЦСОИ получает шкалу времени UTC(SU) в постоянном режиме от сервера синхронизации времени утвержденного типа. Синхронизация часов ЦСОИ с сервером синхронизации времени происходит при расхождении более чем на ± 1 с.

УСПД получает шкалу времени от устройства синхронизации системного времени УССВ-16HVS. УССВ-16HVS осуществляет прием и обработку сигналов GPS/ГЛОНАСС по которым осуществляет постоянную синхронизацию собственных часов со шкалой времени UTC(SU) и контроль часов УСПД с периодичностью не реже 1 раза в 30 минут. Синхронизация часов УСПД с УССВ-16HVS происходит при расхождении более чем на ±1 с. При каждом опросе счетчиков УСПД определяет поправку часов счетчиков и, в случае, если поправка часов счетчиков превышает по ±2 с (параметр настраиваемый), формирует команду синхронизации. Журналы событий счетчиков, УСПД и сервера ЦСОИ отображают факты коррекции времени с обязательной фиксацией времени до и после коррекции и (или) величины коррекции времени, на которую было скорректировано устройство. При нарушении в приеме сигналов точного времени УСПД, коррекцию времени в ИВКЭ и (или) счетчиках может производить уровень ИВК (ЦСОИ). В случае выхода из строя сервера синхронизации времени утвержденного типа источником точного времени могут выступать NTP-серверы ФГУП «ВНИИФТРИ» (пtp1.vniiftri.ru, ntp2.vniiftri.ru, ntp3.vniiftri.ru).

Программное обеспечение

В АИИС КУЭ используется ПО «АльфаЦЕНТР». Уровень защиты ПО от непреднамеренных и преднамеренных изменений предусматривает ведение журналов фиксации ошибок, фиксации изменений параметров, защиты прав пользователей и входа с помощью пароля, защиты передачи данных с помощью контрольных сумм, что соответствует уровню «средний» в соответствии с Р 50.2.077-2014. Метрологически значимая часть ПО указана в таблице 1.

Таблица 1 - Идентификационные признаки метрологически значимой части ПО

Идентификационные данные (признаки)	Значение
Идентификационное наименование программного	ac_metrology.dll
обеспечения	ac_metrology.dn
Номер версии (идентификационный номер) програм-	не ниже 12.1
много обеспечения	не ниже 12.1
Цифровой идентификатор программного обеспечения	3e736b7f380863f44cc8e6f7bd211c54
(рассчитываемый по алгоритму MD5)	3e/300/1360603144cc6e01/0d211c34

Метрологические и технические характеристики

Состав измерительных каналов (ИК) и их основные метрологические и технические характеристики приведены в таблицах 2, 3, 4 и 5.

Таблица 2 – Состав ИК

№ИК	Наименование ИК	TT	TH	Счетчик	УСПД/УССВ/ Сервер
1	2	3	4	5	6
1	ПС 110 кВ Конденсат-2, ввод-1 110 кВ 1Т	ТG 145-420 Кл.т. 0,5 Ктт = 600/5 Рег. № 15651-96	НКФ-110 Кл.т. 0,5 Ктн = 110000/100 Per. № 26452-04	СЭТ-4ТМ 03М Кл.т. 0,2S/0,5 Рег. № 36697-08	УСПД RTU-325 Рег № 37288-08; УССВ-16HVS;
2	ПС 110 кВ Конденсат-2, ТСН-1	Т-0,66У3 Кл.т. 0,5 Ктт = 150/5 Рег. № 15764-96	Не используется	A1802RALXQ- P4GB-DW-4 Кл.т. 0,2S/0,5 Per. № 31857-06	цсои Цсои

Продолжение таблицы 2

1	<u> 2</u>	3	4	5	6
3	ПС 110 кВ Конденсат-2, ввод-2 110 кВ 2Т	ТG 145-420 Кл.т. 0,5 Ктт = 600/5 Рег. № 15651-96	НКФ-110 Кл.т. 0,5 Ктн = 110000/100 Рег. № 26452-04	СЭТ-4ТМ 03М Кл.т. 0,2S/0,5 Рег. № 36697-08	
4	ПС 110 кВ Конденсат-2, ТСН-2	Т-0,66У3 Кл.т. 0,5 Ктт = 150/5 Рег. № 15764-96	Не используется	A1802RALXQ- P4GB-DW-4 Кл.т. 0,2S/0,5 Per. № 31857-06	
5	ПС 110 кВ Конденсат-2, ЗРУ-6 кВ Конденсат-2, 1 СШ 6 кВ, яч.109 ТСН-1	Т-0,66У3 Кл.т. 0,5 Ктт = 100/5 Рег. № 15764-96	Не используется	А1802RALXQ- P4GB-DW-4 Кл.т. 0,2S/0,5 Per. № 31857-06	
6	ПС 110 кВ Конденсат-2, ЗРУ-6 кВ Конденсат-2, 2 СШ 6 кВ, яч.208	ТШЛ-10У3 Кл.т. 0,5 Ктт = 3000/5 Рег. № 3972-73	НАМИ-10- 95УХЛ2 Кл.т. 0,5 Ктн = 6000/100 Per. № 20186-00	А1802RALXQ- P4GB-DW-4 Кл.т. 0,2S/0,5 Per. № 31857-06	УСПД RTU-325 Рег № 37288-08;
7	ПС 110 кВ Конденсат-2, ЗРУ-6 кВ Конденсат-2, 2 СШ 6 кВ, яч.216, КЛ 6 кВ ф.Сургут Перевалка-1	ТОЛ 10-1 Кл.т. 0,5 Ктт = 300/5 Рег. № 15128-96	НАМИ-10- 95УХЛ2 Кл.т. 0,5 Ктн = 6000/100 Рег. № 20186-00	СЭТ-4ТМ.03М Кл.т. 0,2S/0,5 Рег. № 36697-08	УССВ-16HVS; ЦСОИ
8	ПС 110 кВ Конденсат-2, ЗРУ-6 кВ Конденсат-2, 2 СШ 6 кВ, яч.206 ТСН-2	Т-0,66У3 Кл.т. 0,5 Ктт = 100/5 Рег. № 15764-96	Не используется	А1802RALXQ- P4GB-DW-4 Кл.т. 0,2S/0,5 Рег. № 31857-06	
9	ПС 110 кВ Конденсат-2, ЗРУ-6 кВ Конденсат-2, 3 СШ 6 кВ, яч.302, КЛ 6 кВ ф.МУП СРЭС МО	ТОЛ-10-1 Кл.т. 0,5 Ктт = 600/5 Рег. № 15128-96	НАМИ-10- 95УХЛ2 Кл.т. 0,5 Ктн = 6000/100 Рег. № 20186-00	A1802RALXQ- P4G-DW-4 Кл.т. 0,2S/0,5 Per. № 31857-06	

Продолжение таблицы 2

	лжение таблицы		A	F	(
1	2	3	4	5	6
10	ПС 110 кВ Конденсат-2, ЗРУ-6 кВ Конденсат-2, 3 СШ 6 кВ, яч.316, КЛ 6 кВ ф.Сургут Певалка-2	ТОЛ 10-1 Кл.т. 0,5 Ктт = 600/5 Рег. № 15128-96	НАМИ-10- 95УХЛ2 Кл.т. 0,5 Ктн = 6000/100 Рег. № 20186-00	СЭТ-4ТМ.03М Кл.т. 0,2S/0,5 Рег. № 36697-08	
11	ПС 110 кВ Конденсат-2, ЗРУ-6 кВ Конденсат-2, 3 СШ 6 кВ, яч.309 ТСН-3	Т-0,66У3 Кл.т. 0,5 Ктт = 100/5 Рег. № 15764-96	Не используется	А1802RALXQ- P4GB-DW-4 Кл.т. 0,2S/0,5 Рег. № 31857-06	
12	ПС 110 кВ Конденсат-2, ЗРУ-6 кВ Конденсат-2, 4 СШ 6 кВ, яч.409, КЛ 6 кВ ф.МУП СРЭС МО СР	ТОЛ 10-1 Кл.т. 0,5 Ктт = 600/5 Рег. № 15128-96	НАМИ-10- 95УХЛ2 Кл.т. 0,5 Ктн = 6000/100 Рег. № 20186-00	A1802RALXQ- P4G-DW-4 Кл.т. 0,2S/0,5 Рег. № 31857-06	УСПД RTU-325
13	ПС 110 кВ Конденсат-2, ЗРУ-6 кВ Конденсат-2, 4 СШ 6 кВ, яч.415 ЛПУ ЭХЗ	ТОЛ 10-1 Кл.т. 0,5 Ктт = 300/5 Рег. № 15128-96	НАМИ-10- 95УХЛ2 Кл.т. 0,5 Ктн = 6000/100 Рег. № 20186-00	СЭТ-4ТМ 03М Кл.т. 0,2S/0,5 Рег. № 31857-06	Рег № 37288-08; УССВ-16HVS; ЦСОИ
14	ПС 110 кВ Бензиновая, ЗРУ-6 кВ Бензиновая, 1 СШ 6 кВ, яч.1.6	ТЛМ-10 Кл.т. 0,5 Ктт = 1500/5 Рег. № 2473- 69	НТМИ-6-66 Кл.т. 0,5 Ктн = 6000/100 Рег. № 2611-70	A1802RALXQ- P4GB-DW-4 Кл.т. 0,2S/0,5 Рег. № 31857-06	
15	ПС 110 кВ Бензиновая, ЗРУ-6 кВ Бензиновая, 2 СШ 6 кВ, яч.2.6	ТЛМ-10 Кл.т. 0,5 Ктт = 1500/5 Рег. № 2473- 69	НТМИ-6-66 Кл.т. 0,5 Ктн = 6000/100 Рег. № 2611-70	A1802RALXQ- P4GB-DW-4 Кл.т. 0,2S/0,5 Per. № 31857-06	
16	ПС 110 кВ Бензиновая, ЗРУ-6 кВ Бензиновая, 3 СШ 6 кВ, яч.3.6	ТЛМ-10 Кл.т. 0,5 Ктт = 1500/5 Per. № 2473- 69	НТМИ-6-66 Кл.т. 0,5 Ктн = 6000/100 Рег. № 2611-70	A1802RALXQ- P4GB-DW-4 Кл.т. 0,2S/0,5 Per. № 31857-06	

Окончание таблицы 2

1	2	3	4	5	6
17	ПС 110 кВ Бензиновая, ЗРУ-6 кВ Бензиновая, 4 СШ 6 кВ, яч.4.6	ТЛМ-10 Кл.т. 0,5 Ктт = 1500/5 Рег. № 2473-	НТМИ-6-66 Кл.т. 0,5 Ктн = 6000/100 Рег. № 2611-70	A1802RALXQ- P4GB-DW-4 Кл.т. 0,2S/0,5 Per. № 31857-06	
18	ПС 110 кВ Бензиновая, ввод 0,4 кВ ТСН-1	Т-0,66 У3 Кл.т. 0,5 Ктт = 150/5 Рег. № 17551-98	Не используется	A1802RALXQ- P4G-DW-4 Кл.т. 0,2S/0,5 Рег. № 31857-06	УСПД RTU-325 Рег № 37288-08; УССВ-16HVS; ЦСОИ
19	ПС 110 кВ Бензиновая, ввод 0,4 кВ ТСН-2	Т-0,66 УЗ Кл.т. 0,5 Ктт = 150/5 Рег. № 17551-98	Не используется	A1802RALXQ- P4G-DW-4 Кл.т. 0,2S/0,5 Per. № 31857-06	

Примечания:

- 1 Допускается замена ТТ, ТН и счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в таблице 2, при условии, что Предприятие-владелец АИИС КУЭ не претендует на улучшение указанных в таблицах 3 и 4 метрологических характеристик.
- 2 Допускается замена УСПД и устройства синхронизации времени на аналогичные утвержденных типов. Замена оформляется техническим актом в установленном на Предприятии-владельце АИИС КУЭ порядке, вносят изменения в эксплуатационные документы. Технический акт хранится совместно с эксплуатационными документами АИИС КУЭ как их неотъемлемая часть

Таблица 3 – Метрологические характеристики ИК в нормальных условиях применения

Tuomida 5 Met ponetti teekite kapaktepitetiikii titt Bitepitanbibik jenebiikii iipitaeteitiili							
ИК №№	$I_5 \leq$	$I_5 \leq I_{\nu}$	$_{13M} < I_{20}$	$I_{20} \leq I_{\nu}$	$_{13M}$ $<$ I_{100}	I ₁₀₀ ≤ I ₁	изм ≤I ₁₂₀
ALIX 145145	cos j	$\delta_{ m Wo}{}^{ m A}$ %	δ _{Wo} P %	$\delta_{ m Wo}{}^{ m A}$ %	$\delta_{\mathrm{Wo}}^{\mathrm{P}}$ %	$\delta_{ m Wo}{}^{ m A}$ %	$\delta_{\mathrm{Wo}}^{\mathrm{P}}$ %
1, 3, 6, 7, 9, 10, 12, 13,	0,50	±5,4	±2,7	±2,9	±1,5	±2,2	±1,2
14, 15, 16, 17	0,80	±2,9	±4,4	±1,6	±2,4	±1,2	±1,9
	0,87	±2,5	±5,5	±1,4	±3,0	±1,1	±2,2
	1,00	±1,8	-	±1,1	-	±0,9	-
2, 4, 5, 8, 11, 18, 19	0,50	±5,3	±2,6	±2,6	±1,3	±1,8	±1,0
	0,80	±2,8	±4,3	±1,4	±2,2	±1,0	±1,5
	0,87	±2,4	±5,3	±1,2	±2,7	±0,8	±1,9
	1,00	±1,7	-	±0,9	-	±0,6	-

Таблица 4 – Мет	рологические характ	геристики ИК в	рабочих	условиях пі	рименения

ИК №№	ans i	$I_5 \leq I_{u}$		I ₂₀ ≤ I _и	$< I_{100}$	I ₁₀₀ ≤ I и	_{зм} ≤I ₁₂₀
AUX 245145	cos j	$\delta_{\mathrm{W}}{}^{\mathrm{A}}$ %	$\delta_{\rm W}^{\rm P}$ %	$\delta_{ m W}{}^{ m A}$ %	$\delta_{\mathrm{W}}^{\mathrm{P}}$ %	$\delta_{ m W}{}^{ m A}$ %	$\delta_{ m W}^{ m P}$ %
1, 3, 6, 7, 9, 10, 12, 13,	0,50	±5,4	±3,0	±3,0	±2,0	±2,3	±1,8
14, 15, 16, 17	0,80	±2,9	±4,6	±1,7	±2,8	±1,4	±2,3
	0,87	±2,6	±5,6	±1,5	±3,3	±1,2	±2,6
	1,00	±1,8	-	±1,1	-	±0,9	-
2, 4, 5, 8, 11, 18, 19	0,50	±5,3	±2,9	±2,7	±1,9	±1,9	±1,7
	0,80	±2,8	±4,5	±1,5	±2,6	±1,1	±2,1
	0,87	±2,5	±5,5	±1,3	±3,0	±1,0	±2,3
	1,00	±1,7	-	±0,9	-	±0,7	-

Пределы поправок часов, входящих в СОЕВ, относительно шкалы времени UTC(SU) ±5 с

Примечание:

 I_2 – сила тока 2% относительно номинального тока TT;

 I_5 – сила тока 5% относительно номинального тока TT;

 I_{20} – сила тока 20% относительно номинального тока TT;

 I_{100} — сила тока 100% относительно номинального тока TT;

 I_{120} – сила тока 120% относительно номинального тока TT;

 $I_{\mbox{\tiny ИЗЗМ}}$ —силы тока при измерениях активной и реактивной электрической энергии относительно номинального тока TT;

 $\delta_{Wo}{}^{A}$ — доверительные границы допускаемой основной относительной погрешности при вероятности P=0,95 при измерении активной электрической энергии;

δ_{Wo} Р − доверительные границы допускаемой основной относительной погрешности при вероятности Р=0,95 при измерении реактивной электрической энергии;

 δ_W^A — доверительные границы допускаемой относительной погрешности при вероятности P=0,95 при измерении активной электрической энергии в рабочих условиях применения;

 δ_{W}^{P} – доверительные границы допускаемой относительной погрешности при вероятности P=0,95 при измерении реактивной электрической энергии в рабочих условиях применения.

Таблица 5 – Основные технические характеристики ИК

Наиманорания уапактеристики	Значение
Наименование характеристики	Эначение
1	2
Количество измерительных каналов	19
Нормальные условия:	
- Tok, % ot I_{hom}	от 5 до 120
 напряжение, % от U_{ном} 	от 99 до 101
- коэффициент мощности cos j	0,5 инд 1,0 - 0,8 емк.
температура окружающего воздуха для счетчиков, °С:	от +21 до +25
Рабочие условия эксплуатации:	
допускаемые значения неинформативных параметров:	
- Tok, % ot I_{hom}	от 5 до 120
 напряжение, % от U_{ном} 	от 90 до 110
- коэффициент мощности cos j	0,5 инд 1,0 - 0,8 емк.
температура окружающего воздуха, °С:	
- для TT и TH	от -40 до +40
- для счетчиков и УСПД	от 0 до +40
- для сервера	от +15 до +25

Окончание таблицы 5

1	
1	2
Период измерений активной и реактивной средней мощности и	30
приращений электрической энергии, минут	
Период сбора данных со счетчиков электрической энергии, минут	30
Формирование XML-файла для передачи внешним системам	Автоматическое
Формирование базы данных с указанием времени измерений и	Автоматическое
времени поступления результатов	
Глубина хранения информации	
Счетчики:	
- тридцатиминутный профиль нагрузки в двух направлениях,	
сутки, не менее	100
Сервер ИВК:	
- хранение результатов измерений и информации состояний	
средств измерений, лет, не менее	3,5

Надежность системных решений:

- защита от кратковременных сбоев питания сервера с помощью источника бесперебойного питания;
 - резервный сервер с установленным специализированным ПО;
- резервирование каналов связи между уровнями ИВКЭ и ИВК и между ИВК и внешними системами субъектов ОРЭМ, а также с инфраструктурными организациями ОРЭМ.

Ведение журналов событий:

- -счётчика, с фиксированием событий:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике.
- ИВК, с фиксированием событий::
 - даты начала регистрации измерений;
 - перерывы электропитания;
 - программные и аппаратные перезапуски;
 - установка и корректировка времени;
 - переход на летнее/зимнее время;
 - нарушение защиты ИВК;
- отсутствие/довосстановление данных с указанием точки измерений и соответствующего интервала времени.

Защищённость применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
 - счётчика:
 - промежуточных клеммников вторичных цепей напряжения;
 - испытательной коробки;
 - сервера;
- защита информации на программном уровне:
 - результатов измерений при передаче информации (возможность использования цифровой подписи);
 - установка пароля на счетчик;
 - установка пароля на УСПД;
 - установка пароля на ЦСОИ.

Знак утверждения типа

наносится на титульный лист формуляра МПЕК.411711.038 .ФО «Система автоматизированная информационно-измерительная коммерческого учета электроэнергии ООО «Газпром энерго» Сургутский завод стабилизации конденсата. Формуляр».

Комплектность средства измерений

Комплектность АИИС КУЭ приведена в таблице 6.

Таблица 6 – Комплектность АИИС КУЭ

Наименование	Обозначение	Количество,
		шт.
Трансформаторы тока	ТЛМ-10	8
Трансформаторы тока	Т-0,66У3	15
Трансформаторы тока	ТШЛ-10У3	3
Трансформаторы тока	ТОЛ-10-1	2
Трансформаторы тока	Т-0,66 У3	6
Трансформаторы тока	TG 145-420	6
Трансформаторы тока	ТОЛ 10-1	8
Трансформаторы напряжения	НТМИ-6-66	4
Трансформаторы напряжения	НКФ-110	6
Трансформаторы напряжения	НАМИ-10-95УХЛ2	3
Счетчики	A1802RALXQ-P4G-DW-4	4
Счетчики	CЭT-4TM.03M	2
Счетчики	CЭT-4TM 03M	3
Счетчики	A1802RALXQ-P4GB-DW-4	10
УСПД	RTU-327	1
ИВК	АльфаЦЕНТР	1
COEB	УССВ-2	1
Система автоматизированная	МПЕК.411711.038.ФО	1
информационно-измерительная		
коммерческого учета электроэнергии ООО		
"Газпром энерго" "Сургутский завод		
стабилизации конденсата". Формуляр		
Система автоматизированная	MΠ-213-RA.RU.310556-2019	1
информационно-измерительная		
коммерческого учета электроэнергии ООО		
"Газпром энерго" "Сургутский завод		
стабилизации конденсата". Методика		
поверки		

Поверка

осуществляется по документу МП-213-RA.RU.310556-2019 «Система автоматизированная информационно-измерительная коммерческого учета электроэнергии ООО «Газпром энерго» Сургутский завод стабилизации конденсата. Методика поверки», утвержденному Φ ГУП «СНИИМ» 30.07.2019 г.

Основные средства поверки:

- в соответствии с «Методикой выполнения измерений параметров вторичных цепей измерительных трансформаторов тока и напряжения», аттестованной ФГУП «СНИИМ» 24 апреля 2014 г. (регистрационный $N \Phi P.1.34.2014.17814$);
 - устройство синхронизации частоты и времени Метроном версии 300 (Рег. № 56465-14);

- для поверки измерительных компонентов, входящих в состав АИИС КУЭ применяются средства поверки, указанные в методиках поверки, утвержденных при утверждении типа измерительных компонентов.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик АИИС КУЭ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке.

Сведения о методиках (методах) измерений

Методика измерений изложена в документе «Методика измерений электрической энергии с использованием системы автоматизированной информационно-измерительной коммерческого учета электроэнергии ООО «Газпром энерго» Сургутский завод стабилизации конденсата» Свидетельство об аттестации методики измерений № 476-RA.RU.311735-2019 от 30.07.2019.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии ООО «Газпром энерго» Сургутский завод стабилизации конденсата

ГОСТ Р 8.596-2002 Метрологическое обеспечение измерительных систем. Основные положения

Изготовитель

Инженерно-технический центр Общества с ограниченной ответственностью «Газпром энерго» (Инженерно-технический центр ООО «Газпром энерго»)

ИНН 7736186950

Адрес: 460000, г. Оренбург, ул. Терешковой, д. 295

Телефон: +7 (3532) 687-126 Факс: +7 (3532) 687-127

E-mail: info@of.energo.gazprom.ru

Испытательный центр

Федеральное государственное унитарное предприятие «Сибирский государственный ордена Трудового Красного Знамени научно-исследовательский институт метрологии» (ФГУП «СНИИМ»)

Адрес: 630004, г. Новосибирск, проспект Димитрова, д. 4 Телефон (факс): +7 (383) 210-08-14, +7 (383) 210-13-60

E-mail: director@sniim.ru

Аттестат аккредитации ФГУП «СНИИМ» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.310556 от 14.01.2015 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

А.В. Кулешов

М.п. «____»____2019 г.