ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Анализаторы радиокоммуникационные МТ8821С

Назначение средства измерений

Анализаторы радиокоммуникационные MT8821C (далее – анализаторы) предназначены для измерения амплитудно-частотных характеристик радиотехнических сигналов и анализа функционирования систем мобильной радиосвязи.

Описание средства измерений

Анализаторы имеют в своем составе высокочастотные передающую (генераторы сигналов) и приемную (анализаторы сигналов) части, опорный генератор синхронизации, управляющий контроллер.

Анализаторы выпускаются в модификациях, которые отличаются набором установленных по предварительному заказу аппаратных и программных опций, предназначенных для измерений и анализа сигналов различных стандартов радиосвязи.

Диапазон частот анализаторов в базовом исполнении составляет от 300 до 3800 МГц, который по заказу может быть расширен до 6000 МГц. Дополнительно могут быть установлены генератор и анализатор низкочастотных сигналов.

Перечень аппаратных и основных программных опций приведен в таблице 1.

Таблица 1 – Перечень аппаратных и основных программных опций

Таблица 1 – Перечень аппаратных и основных программных опций			
Обозначение	Наименование	Примечания	
1	2	3	
	АППАРАТНЫЕ ОПЦИИ		
MT8821C-001	Модуль W-CDMA		
MT8821C-002	Модуль TDMA		
MT8821C-003	Модуль СDMA2000		
MT8821C-005	Модуль 1xEV-DO	при наличии МТ8821С-003	
MT8821C-007	Модуль TD-SCDMA	при наличии МТ8821С-001	
MT8821C-008	Модуль LTE		
MT8821C-011	Модуль генератора/анализатора		
W110021C-011	низкочастотных сигналов		
MT8821C-012	Вторая группа для параллельного тестирования	добавляет группу «Phone2»	
MT8821C-019	Расширенный диапазон частот до 6000 МГц		
MT8821C-025	2-й генератор для группы «Phone1»		
MT8821C-026	3-й генератор для группы «Phone1»	при наличии МТ8821С-025	
MT8821C-027	4-й генератор для группы «Phone1»	при наличии МТ8821С-026	
MT8821C-028	2-й генератор для группы «Phone2»	при наличии МТ8821С-012	
MT8821C-029	3-й генератор для группы «Phone2»	при наличии МТ8821С-028	
MT8821C-030	4-й генератор для группы «Phone2»	при наличии МТ8821С-029	
MT8821C-043	Измерение параметра смещения по времени для	при наличии МТ8821С-003	
W110021C-043	устройств стандарта CDMA2000	и MX882102C	
	ОСНОВНЫЕ ПРОГРАММНЫЕ ОПЦІ		
MX882100C	Измерение параметров сигналов W-CDMA	при наличии МТ8821С-001	
MX882170C	Опция шифрования сигналов W-CDMA	при наличии МХ882100С	
MX882101C	Измерение параметров сигналов GSM	при наличии МТ8821С-002	
MX882102C	Измерение параметров сигналов CDMA2000	при наличии МТ8821С-003	

Продолжение таблицы 1

1	2	3
MX882106C	Измерение параметров сигналов 1xEV-DO	при наличии MT8821C-005 и MX882102C
MX882107C	Измерение параметров сигналов TD-SCDMA	при наличии МТ8821С-007
MX882112C	Измерение параметров сигналов LTE FDD	при наличии МТ8821С-008
MX882113C	Измерение параметров сигналов LTE TDD	при наличии МТ8821С-008
MX882115C	Тестирование IP трафика в сети W-CDMA HSPA Evolution	при наличии МТ8821С-008
MX882116C	Измерение параметров сигналов LTE Cat. M1	при наличии МТ8821С-008
MX882117C	Измерение параметров сигналов NB-IoT	при наличии МТ8821С-008
MX882120C	Измерения по списку параметров	
MX882132C	Упрощенный анализ сигналов CDMA2000	
MX882136C	Упрощенный анализ сигналов 1xEV-DO	
MX882142C	Упрощенный анализ сигналов LTE FDD	
MX882143C	Упрощенный анализ сигналов LTE TDD	
MX882164C	Тестирование систем LTE VoLTE Echoback	при наличии MX882112C для LTE FDD, MX882113C для LTE TDD

Управление работой анализаторов осуществляется с лицевой панели или дистанционно по интерфейсам GPIB (IEEE488.2) и Ethernet (10/100/1000Base-T).

Конструктивно анализаторы выполнены в виде настольного моноблока. Общий вид анализаторов со стороны лицевой панели показан на рисунке 1, общий вид со стороны задней панели с обозначением места нанесения знака утверждения типа и знака поверки, а также схемы пломбировки от несанкционированного доступа представлены на рисунке 2.

Программное обеспечение

Программное обеспечение установлено на внутренний контроллер, его метрологически значимая часть служит для задания режимов работы, параметров передачи и приема сигналов, и отображения измерительной информации.

Уровень защиты программного обеспечения от непреднамеренных и преднамеренных изменений «низкий» по Р 50.2.077-2014.

Идентификационные данные программного обеспечения приведены в таблице 2.

Таблица 2 – Идентификационные данные программного обеспечения

Идентификационные данные (признаки)	Значение	
Идентификационное наименование	MT8821C Firmware	
Номер версии (идентификационный номер)	не ниже 30.80	

Метрологические и технические характеристики

Метрологические и технические характеристики представлены в таблицах 3 и 4.

Таблица 3 – Метрологические характеристики

Наименование характеристики	Значение	
1	2	
ОПОРНЫЙ ГЕНЕРАТОР		
Частота, МГц	10	
Пределы допускаемой относительной погрешности частоты при выпуске из		
производства или после подстройки при температуре (25 ± 5) $^{\circ}\mathrm{C}$	$\pm 2,2\cdot 10^{-8}$	
Относительный годовой дрейф частоты, не более	$\pm 1,0.10^{-7}$	
Значения частоты сигнала на входе внешней синхронизации, МГц	10 ± 1.10^{-5}	
	$13 \pm 1,3 \cdot 10^{-5}$	

Продолжение таблицы 3

Продолжение таблицы 3	1
1	2
ПЕРЕДАЮЩАЯ ЧАСТЬ (ГЕНЕРАТОРЫ ВЫСОКОЧАСТОТНЫХ	Х СИГНАЛОВ ТХ)
Диапазон частот, МГц	
базовое исполнение	от 30 до 3800
с опцией МТ8821С-019	от 30 до 6000
Разрешение по частоте, Гц	1,0
Диапазон установки уровня мощности, дБм ¹⁾	
TX1 на выходе портов «MAIN»	от −140 до −10
TX2, TX3, TX3, TX4 на выходе портов «MAIN»	от –140 до –16
TX1, TX2, TX3, TX3, TX4 на выходе портов «AUX»	от –125 до +5
Разрешение по уровню мощности, дБ	0,1
Пределы допускаемой относительной погрешности уровня мощности,	дБ ²⁾
на частотах F < 350 М Γ ц	$\pm 1,5$
на частотах 350 М Γ ц \leq F \leq 3800 М Γ ц	±1,0
на частотах 3800 МГц < F ≤ 6000 МГц	±1,3
Относительный уровень негармонических помех, дБ, не более 3)	-30
Относительный уровень гармоник, дБ, не более	-25
ПРИЕМНАЯ ЧАСТЬ (АНАЛИЗАТОРЫ ВЫСОКОЧАСТОТНЫ	Х СИГНАЛОВ)
Диапазон частот, МГц	,
опции MT8821C-001/002/003/005/007	от 350 до 2700
опция МТ8821С-008 в базовом исполнении	от 400 до 3800
опция МТ8821С-008 с опцией МТ8821С-019	от 400 до 6000
опция МТ8821С-008 с опцией МХ882115С	от 350 до 2700
Диапазон установки опорного уровня мощности, дБм	, , ,
опции MT8821C-001/003/005	от -65 до +35
опция МТ8821С-002	от –30 до +40
опция МТ8821С-007	от –70 до +35
опция МТ8821С-008 с опциями МХ882112С/13С/42С/43С	от -60 до +35
опция MT8821C-008 с опцией MX882115C	от –65 до +35
Разрешение по уровню мощности, дБ	0,1
Пределы допускаемой относительной погрешности измерения уровня	
опции МТ8821С-001/003/005/007, опция МТ8821С-008 с опцией М	
Р≥-30 дБм	±0,5
	±0,7
m P $<$ -55 д $ m Б$ м	±0,9
опция MT8821C-002 во всем диапазоне уровней мощности 4)	±0,5
опция МТ8821С-008 с опциями МХ882112С/13С/42С/43С	
на частотах до 3800 М Γ ц включ. $^{4)}$	
Р≥-20 дБм	±0,5
-50 дБм ≤ P < -20 дБм	±0,7
Р < -50 дБм	±0,9

¹⁾ Здесь и далее дБм обозначает уровень мощности в дБ относительно 1 мВт 2) При температуре от 10 до 40 °C после автоподстройки (внутренней калибровки) 3) При отстройке более 100 кГц от частоты сигнала, типовое справочное значение

⁴⁾ При температуре от 10 до 40 °C после автоподстройки (внутренней калибровки)

Продолжение таблицы 3

1	2
опция MT8821C-008 с опциями MX882112C/13C/42C/43C и MT8821C на частотах св. 3800 до 6000 ГГц включ. 1)	C-019
Р≥ –20 дБм	±0,7
–50 дБм ≤ Р < –20 дБм	±0,9
Р < −50 дБм	±1,1
Нелинейность измерения мощности 2) при минимальном уровне мощности	
опции МТ8821С-001/003/005/007, опция МТ8821С-008 с опцией МХ8	82115C
Pmin ≥ –55 дБм	±0,2
–65 дБм ≤ Pmin < –55 дБм	±0,4
опция MT8821C-002, P≥-30 дБм	±0,2
опция МТ8821С-008 с опциями МХ882112С/13С/42С/43С	
Р≥-50 дБм	±0,2
–60 дБм ≤ Р < –50 дБм	±0,4
ГЕНЕРАТОР НИЗКОЧАСТОТНЫХ СИГНАЛОВ ³⁾	
Диапазон частот, Гц	от 30 до 10000
Пределы допускаемой абсолютной погрешности установки частоты, Гц	$(F \cdot \delta F + 0,1)^{4}$
Выходное сопротивление, Ом, не более	1,0
Максимальная сила тока в нагрузке, мА	100
Диапазон установки амплитуды напряжения (пик), В	от 0 до 5
Разрешение установки амплитуды напряжения Upeak, мВ	
Upeak ≤ 50 мВ	0,01
$50~\mathrm{mB} < \mathrm{Upeak} \le 500~\mathrm{mB}$	0,1
Upeak > 500 мВ	1,0
Пределы допускаемой относительной погрешности установки амплитуды	напряжения
Upeak на частотах F, дБ	***************************************
Upeak \geq 10 мВ, F $<$ 50 Γ ц	±0,3
Upeak ≥ 10 мB, $F \geq 50$ Γ ц	±0,2
Коэффициент гармоник напряжения с амплитудой Upeak на частотах F, дВ	
Upeak ≥ 70 мВ	-54
Upeak \geq 500 мB, F \leq 5 к Γ ц	-60

¹⁾ При температуре от 20 до 30 °C после автоподстройки (внутренней калибровки)

²⁾ Нелинейность δ определяется по формуле $\delta = [(P1изм - P2изм)/(P1 - P2)]$, где P1 и P2 – значения двух уровней мощности на входе приемника, P1изм и P2изм – измеренные приемником значения этих уровней мощности, $(P1 - P2) \le 40$ дБ

³⁾ Опция MT8821C-011 с одной из опций MT8821C-001, MT8821C-002, MT8821C-003, MT8821C-007

⁴⁾ F — значение частоты, δF — относительная погрешность частоты опорного генератора (параметры погрешности указаны в начале таблицы 3)

Окончание таблицы 3

1	2
АНАЛИЗАТОР НИЗКОЧАСТОТНЫХ СИГНАЛОВ ¹⁾	
Диапазон частот, Гц	от 50 до 10000
Пределы допускаемой абсолютной погрешности измерения частоты, Гц	$(F \cdot \delta F + 0.5)^{2}$
Входное сопротивление, кОм	100
Диапазон измерения амплитуды напряжения (пик), В	от 0,001 до 5
Разрешение измерения амплитуды напряжения Upeak, мВ	
Upeak ≤ 50 мВ	0,01
50 мB < Upeak ≤ 500 мВ	0,1
Upeak > 500 мВ	1,0
Пределы допускаемой относительной погрешности измерения амплитуды в	напряжения
Upeak на частотах F, дБ	
Upeak ≥ 1 мВ, F ≥ 1 кГц	±0,4
Upeak ≥ 10 мВ, F ≥ 50 Гц	±0,2
Минимальное значение измеряемого коэффициента гармоник напряжения о	с амплитудой
Upeak на частоте 1 кГц, дБ	
10 мВ ≤ Upeak ≤ 50 мВ	-46
50 мB < Upeak < 1 B	-54
Upeak ≥ 1 B	-60
1) Опция МТ8821С-011 с одной из опций: МТ8821С-001, МТ8821С-00	2, MT8821C-003,

- MT8821C-007
- 2) F значение частоты, δF относительная погрешность частоты опорного генератора (параметры погрешности указаны в начале таблицы 3)

Таблица 4 – Основные технические характеристики

тиолици г основные техни теские хириктеристики	
Наименование характеристики	Значение
Тип высокочастотных соединителей	
порты «MAIN»	N(f)
порты «AUX»	SMA(f)
Напряжение сети питания частотой 50 Гц	от 200 до 240
Потребляемая мощность, B·A, не более	1200
Габаритные размеры (ширина × высота × глубина), мм	426´222´578
Масса, кг, не более	40
Рабочие условия применения	
температура окружающей среды, °С	от 5 до 40
относительная влажность воздуха, %, не более	90 (без конденсата)

Знак утверждения типа

наносится на заднюю панель корпуса анализаторов в виде наклейки и на титульный лист руководства по эксплуатации типографским способом.

Комплектность средства измерений

представлена в таблице 5.

Таблица 5 – Комплектность анализаторов

Наименование и обозначение	Кол-во
Анализатор радиокоммуникационный МТ8821С	1 шт.
Опции	по заказу
Кабель сетевой	1 шт.
Накопитель USB с документацией	1 шт.
Руководство по эксплуатации M-W3753AE-14.0.RUS	1 шт.
Методика поверки МТ8821С/МП-2019	1 шт.

Поверка

осуществляется по документу МТ8821С/МП-2019 «ГСИ. Анализаторы радиокоммуникационные МТ8821С. Методика поверки», утвержденному АО «АКТИ-Мастер» 14.09.2019 г.

Основные средства поверки:

- стандарт частоты рубидиевый FS725, регистрационный номер 45344-10;
- частотомер универсальный Tektronix FCA3000, регистрационный номер 51532-12;
- преобразователь измерительный NRP-Z21, регистрационный номер 37008-08;
- анализатор сигналов MS2830A с опциями 008 и 043, регистрационный номер 45345-10;
- генератор сигналов MG3710A с опцией 036, регистрационный номер 55303-13;
- мультиметр 3458А, регистрационный номер 25900-03;
- калибратор универсальный 9100 с опцией 250, регистрационный номер 25985-09;
- измеритель нелинейных искажений автоматический С6-11, регистрационный номер 9081-83.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых средств измерений с требуемой точностью.

Знак поверки наносится заднюю панель корпуса анализаторов в виде наклейки (место нанесения показано на рисунке 2) и/или на свидетельство о поверке.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные документы, устанавливающие требования к анализаторам радиокоммуникационным MT8821C

Государственная поверочная схема для средств измерений времени и частоты (утверждена приказом Росстандарта от 31.07.2018 г. № 1621)

ГОСТ Р 8.562-2007 ГСИ. Государственная поверочная схема для средств измерений мощности и напряжения переменного тока синусоидальных электромагнитных колебаний

Государственная поверочная схема для средств измерений переменного электрического напряжения до 1000 В в диапазоне частот от $1 \cdot 10^{-1}$ до $2 \cdot 10^{9}$ Гц (утверждена приказом Росстандарта от 29.05.2018 г. № 1053)

Изготовитель

Фирма "Anritsu Corporation", Япония

Адрес: 5-1-1 Onna, Atsugi-shi, Kanagawa 243-8555, Japan

Тел./факс: +81-46-223-1111

Web-сайт: https://www.anritsu.com E-mail: support.esdc@anritsu.com

Заявитель

Представительство ООО «Анритсу ЭМЕА Лтд.»

Адрес: 125009, г. Москва, ул. Тверская, д.16, стр.1, этаж 9, офис 901Б, комната 1.1

Тел.: +7 (495) 363-16-94, факс: (495)935-89-62

E-mail: sales.russia@anritsu.com

Испытательный центр

Акционерное общество «АКТИ-Мастер» (АО «АКТИ-Мастер»)

Адрес: 127106, г. Москва, Нововладыкинский проезд, д. 8, стр. 4, этаж 3, офис 310-314

Тел./факс: +7 (495) 926-71-70 Web-сайт: http://www.actimaster.ru

E-mail: post@actimaster.ru

Аттестат аккредитации ЗАО «АКТИ-Мастер» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.311824 от 14.10.2016 г.

Заместитель	
Руководителя Федерального	
агентства по техническому	
регулированию и метрологии	

М.п. «____»____2019 г.