ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Теплосчётчики компактные ТСУ

Назначение средства измерений

Теплосчётчики компактные TCУ (далее – теплосчетчики) предназначены для измерений объема, объемного расхода, температуры, разности температур теплоносителя в закрытых системах тепло- и водоснабжения, вычисления количества тепловой энергии нагрева, тепловой энергии охлаждения и отображения тепловой мощности.

Описание средства измерений

Принцип действия теплосчетчиков состоит в измерении первичными преобразователями теплосчетчиков количества объема, объемного расхода, температуры, разности температур, последующей обработке информации по заданному алгоритму и преобразовании полученных аналоговых сигналов в цифровые.

Конструктивно теплосчетчики состоят из:

- одного преобразователя расхода;
- пары термопреобразователей сопротивления;
- вычислителя.

Теплосчетчики выпускаются в модификациях, отличающихся глубиной архива, диаметром условного прохода, конструктивными особенностями, наличием импульсных входов/выходов.

Теплосчетчики могут обеспечивать дистанционную передачу данных через импульсный выход, или интерфейс типа RS-485, или интерфейс типа M-Bus.

Структура условного обозначения теплосчетчиков:

$$\frac{\text{TCY-}\square}{1} \frac{\square}{2} \frac{\square}{3}$$

- 1 обозначение типа теплосчетчиков;
- 2 диаметр условного прохода:
 - 15;
 - 20;
 - 25;
 - 32;
 - 40;
 - 50;
 - 65.
- 3 модификация телосчетчиков:
- « » для теплосчетчиков, с конструкцией согласно рисунку 1 а), имеющих импульсные входы;
- «Д» для теплосчетчиков, с конструкцией согласно рисунку 1 а), имеющих импульсный выход, или интерфейс типа RS-485, или интерфейс типа M-Bus;
- «Д1» для теплосчетчиков, с конструкцией согласно рисунку 1 б), имеющих импульсный выход, или интерфейс типа RS-485, или интерфейс типа M-Bus.

Теплосчетчики обеспечивают выполнение следующих функций:

- измерение объема, объемного расхода, температуры, разности температур, текущего времени;
 - вычисление количества тепловой энергии;
 - индикация количества тепловой мощности;
 - архивирование измеренных, вычисленных и индицируемых значений;
 - ввод настроечных параметров и защиту данных от несанкционированного изменения;

- показание текущих, архивных и настроечных параметров на дисплее;
- ведение календаря и времени суток и учет времени работы.

В архиве энергонезависимой памяти теплосчетчиков хранятся результаты измерений, диагностическая информация и накапливаются следующие интервалы времени:

- время штатной работы теплосчетчиков, ч;
- время действий нештатных ситуаций, ч.

Емкость архива теплосчетчиков не менее: часового -1440 часов; суточного -180 суток; месячного -60 месяцев для теплосчетчиков, имеющих импульсные входы (месячного -36 месяцев для теплосчетчиков, имеющих импульсный выход, или интерфейс типа RS-485, или интерфейс типа M-Bus).

Теплосчетчики имеют импульсный вход для подключения к ним счетчиков воды с импульсным выходом.

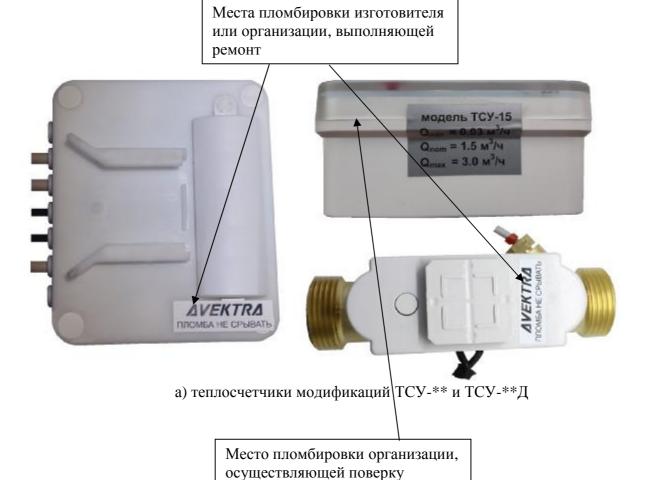
Теплосчетчик может устанавливаться как на подающий, так и на обратный трубопровод в закрытых системах тепло- и водоснабжения.

Емкость дисплея и цена деления младшего разряда при отображении физических величин указана в таблице 1.

Таблица 1 - Емкость дисплея и цена деления младшего разряда

Tuestingu T Emineeth Ameristen it ge		den a breaker.	ı	
Попоможн	Емкость дисплея		,	ия младшего ояда
Параметр	В меню	В главном	В меню	В главном
	архивов	меню	архивов	меню
Количество тепловой энергии	99999,999	9999,9999	0,001	0,0001
	кВт∙ч	Гкал	кВт∙ч	Гкал
Тепловая мощность, кВт	999,99999	-	0,00001	-
Температура, °С	99,99	99,9	0,01	0,1
Разность температур, °С	99,99	99,99	0,01	0,01
Объем, м3	99,999999	999999,99	0,000001	0,01
Объемный расход, м3/ч	9999,9999	99999,999	0,0001	0,001

Общий вид теплосчетчиков представлен на рисунке 1. Схемы пломбировки производителем от несанкционированного доступа представлены на рисунках 2 и 3.



а) теплосчетчики модификаций ТСУ-** и ТСУ-**Д

б) теплосчетчики модификации ТСУ-**Д1

Рисунок 1 - Общий вид теплосчетчиков

б) теплосчетчики модификации ТСУ-**Д1

Рисунок 2 – Схема пломбировки теплосчетчиков изготовителем или организации, выполняющей ремонт, а также организации, осуществляющей поверку

а) пломба на проточной части

б) пломба на шаровом кране

Рисунок 3 — Схема пломбировки теплосчетчиков организации, принимающей теплосчетчики в эксплуатацию

Программное обеспечение

Теплосчетчики имеют встроенное программное обеспечение (далее $-\Pi O$), которое является метрологически значимым и устанавливается в интегрированной памяти при изготовлении. Нормирование метрологических характеристик теплосчетчиков проведено с учетом влияния встроенного ΠO .

Встроенное ПО теплосчетчиков предназначено для измерений температуры, разности температур, объёма теплоносителя, текущего времени, вычислений расхода теплоносителя, количества тепловой энергии, архивирования и передачи измеренных и вычисленный параметров теплоснабжения. Теплосчётчики могут комплектоваться цифровым интерфейсом RS-485 или M-bus для подключения к персональному компьютеру, автоматизированным диспетчерским или измерительным системам.

Конструкция теплосчетчиков исключает возможность несанкционированного влияния на встроенное ПО теплосчетчиков и измерительную информацию.

Уровень защиты встроенного ПО от непреднамеренных и преднамеренных изменений – «высокий» в соответствии с Р 50.2.077-2014.

Идентификационные данные встроенного ПО приведены в таблице 2.

Таблица 2 - Идентификационные данные встроенного ПО

	Значение для модификации					
Идентификационные данные (признаки)	ТСУ-15, ТСУ-15Д, ТСУ-15Д1	ТСУ-20, ТСУ-20Д, ТСУ-20Д1	ТСУ-25	ТСУ-32, ТСУ-40, ТСУ-50, ТСУ-65		
Идентификационное наименование ПО	MeterSetVX.X					
Номер версии (идентификационный номер ПО)	200XXXX. X*	216XXXX. X	225XXXX. X	2XXXXXXXX		
Цифровой идентификатор ПО	-	-	-	-		
* Где X – цифры от 0 до 9.						

Метрологические и технические характеристики

Таблица 3 – Метрологические характеристики теплосчетчиков с диаметром условного прохода 15, 20 и 25

13, 20 H 23					
	Значение для исполнения				
Наименование характеристики	ТСУ-15,		ТСУ-20,		
	ТСУ	-15Д,	ТСУ-20Д,	ТСУ-25	
		-15Д1	ТСУ-20Д1		
Диаметр условного прохода, Ду, мм	15		20	25	
Минимальный объемный расход, $q_{\text{мин}}(q_i^{\ 1})$, m^3/q	0,01	0,015	0,025	0,035	
Номинальный объемный расход, $q_{\text{ном}}(q_p^{-1})$, M^3/q	0,6	1,5	2,5	3,5	
Максимальный объемный расход, $q_{\text{макс}}(q_s^{(1)})^{(2)}$, M^3/Ψ	3,0	3,0	5,0	7,0	
Порог чувствительности, м ³ /ч	0,002	0,003	0,005	0,007	
Пределы допускаемой относительной погрешности			-		
измерений объемного расхода (объема) теплоносителя		$\pm (2+0.02 \cdot q_p/q)^{3}$			
класса 2 по ГОСТ Р ЕН 1434-1-2011, %					
Диапазон измерений температуры теплоносителя, °С	от +1 до +95				
Пределы допускаемой абсолютной	$\pm (0.6 + 0.004 \cdot \Theta)^{4)}$				
погрешности измерений температуры, °С	(, , , , , ,				
Диапазоны измерений разности температур, $\Delta\Theta$, °C	от +2 до +95				
Пределы допускаемой относительной погрешности					
измерений разности температур в подающем и	$\pm (0.5 + 3 \cdot \Delta\Theta_{\min}/\Delta\Theta)^{5)}$)		
обратном трубопроводах, %					
Пределы допускаемой относительной погрешности				1)	
измерений тепловой энергии теплосчетчика для класса	±(3	$3 + 4 \cdot \Delta \Theta_{\rm r}$	$_{\min}/\Delta\Theta + 0.02 \cdot c$	$q_p/q)^{1}$	
2 по ГОСТ Р ЕН 1434-1-2011, %					
Пределы допускаемой относительной погрешности	±0,05				
измерений текущего времени, %			-0,03		
1					

 $^{^{1)}}$ Обозначения в соответствии с ГОСТ Р ЕН 1434-1-2011.

 $^{^{2)}}$ $q_{\text{макс}}$ (q_s) — предельно допустимое значение расхода, при котором теплосчетчики функционируют в диапазоне расходов от $q_{\text{мин}}$ (q) до $q_{\text{макс}}$ (q_s) не более 1 ч в день и не более 200 ч в год без превышения максимально допускаемой погрешности.

 $^{^{3)}}$ q – измеренное значение объемного расхода теплоносителя, 3 /ч.

 $^{^{4)}\}Theta$ — измеренное значение температуры прямого или обратного потоков теплоносителя, $^{\circ}$ С.

 $^{^{5)}}$ $\Delta\Theta_{\text{min}}$ – минимальное значение разности температуры, °C; $\Delta\Theta$ – измеренное значение разности температуры, °C.

Таблица 4 – Основные технические характеристики теплосчетчиков с диаметром условного

прохода	15,	20	И	25

	Значение для исполнения			
Наименование характеристики	ТСУ-15,	ТСУ-20,		
	ТСУ-15Д,	ТСУ-20Д,	ТСУ-25	
	ТСУ-15Д1	ТСУ-20Д1		
Установочная длина ультразвуковых датчиков объемного расхода, мм, не более	110 130		160	
Габаритные размеры вычислителя в зависимости от	•			
модификации (длина×ширина×высота), мм, не более:				
- « »	95×79×42		95×79×42	
- «Д» и «Д1»	110×82×35		-	
Масса, кг, не более	0,7	0,9		

Таблица 5 — Метрологические характеристики теплосчетчиков с диаметром условного прохода 32, 40, 50 и 65

32, 40, 50 и 65				
Панианаранна успантарнатики	Значение для исполнения			
Наименование характеристики	ТСУ-32	ТСУ-40	ТСУ-50	ТСУ-65
Диаметр условного прохода, Ду, мм	32	40	50	65
Минимальный объемный расход, $q_{\text{мин}}(q_i^{\ 1})$, M^3/q	0,060	0,100	0,150	0,250
Номинальный объемный расход, $q_{\text{ном}}(q_p^{-1})$, M^3/q	6,0	10,0	15,0	25,0
Максимальный объемный расход, $q_{\text{макс}}(q_s^{(1)})^{(2)}$, m^3/q	15,0	20,0	70,0	130,0
Порог чувствительности, м ³ /ч	0,012	0,020	0,070	0,070
Пределы допускаемой относительной погрешности измерений объемного расхода (объема) теплоносителя класса 2 по ГОСТ Р ЕН 1434-1-2011, %	$\pm (2+0.02 \cdot q_p/q)^{3)}$			
Диапазон измерений температуры теплоносителя, °С	от +1 до +95			
Пределы допускаемой абсолютной погрешности измерений температуры, °С	±(0,6+0,004·\O) 4)			
Диапазоны измерений разности температур, $\Delta\Theta$, °C:	от +2 до +95			
Пределы допускаемой относительной погрешности измерений разности температур в подающем и обратном трубопроводах, %				
Пределы допускаемой относительной погрешности измерений тепловой энергии теплосчетчика для класса 2 по ГОСТ Р ЕН 1434-1-2011, %	±(3 -	$+ 4 \cdot \Delta \Theta_{\min} / \Delta$	Θ + 0,02· q_p	/q) ¹⁾
Пределы допускаемой относительной погрешности измерений текущего времени, %		±0,	.05	

 $^{^{1)}}$ Обозначения в соответствии с ГОСТ Р ЕН 1434-1-2011.

 $^{^{2)}}$ $q_{\text{макс}}$ (q_s) — предельно допустимое значение расхода, при котором теплосчетчики функционируют в диапазоне расходов от $q_{\text{мин}}$ (q) до $q_{\text{макс}}$ (q_s) не более 1 ч в день и не более 200 ч в год без превышения максимально допускаемой погрешности.

 $^{^{3)}}$ q — измеренное значение объемного расхода теплоносителя, 3 /ч.

 $^{^{4)}\}Theta$ — измеренное значение температуры прямого или обратного потоков теплоносителя, $^{\circ}$ С.

 $^{^{5)}}$ $\Delta\Theta_{min}$ – минимальное значение разности температуры, °C;

 $[\]Delta\Theta$ – измеренное значение разности температуры, °C.

Таблица 6 – Основные технические характеристики теплосчетчиков с диаметром условного прохода 32, 40, 50 и 65

Наименование характеристики	Значение для исполнения			
паименование характеристики	ТСУ-32	ТСУ-40	ТСУ-50	ТСУ-65
Установочная длина ультразвуковых датчиков объемного расхода, мм, не более	180	200	220	240
Габаритные размеры вычислителя в зависимости от модификации (длина×ширина×высота), мм, не более		95×7	79×42	
Масса, кг, не более	1,2	1,6	2,0	2,4

Таблица 7 – Общие технические характеристики теплосчетчиков

таолица т общие техни неекие характериетики тени	or iei iimob
Наименование характеристики	Значение
Максимальное рабочее избыточное давление, МПа	1,6
Потеря давления при постоянном расходе $q_{\text{ном}}(q_p^{\ 1})$, МПа, не более	0,025
Класс защиты по ГОСТ 14254-2015	IP68
Напряжение питания постоянного тока встроенного элемента, В	от 3,5 до 3,7
Выходной цифровой сигнал	Modbus; M-Bus
Выходной цифровой сигнал Рабочие условия измерений: - температура окружающей среды, °С - относительная влажность воздуха при температуре окружающей среды +35 °С, %	Modbus; M-Bus от +5 до +50 до 95
Рабочие условия измерений: - температура окружающей среды, °С - относительная влажность воздуха при температуре	от +5 до +50
Рабочие условия измерений: - температура окружающей среды, °С - относительная влажность воздуха при температуре окружающей среды +35 °C, %	от +5 до +50 до 95

¹⁾ Обозначения в соответствии с ГОСТ Р ЕН 1434-1-2011.

Знак утверждения типа

наносится на переднюю панель теплосчетчиков любым технологическим способом, обеспечивающим четкое изображение и сохраняемость, и на титульный лист руководства по эксплуатации типографским способом.

Комплектность средства измерений

Таблица 8 – Комплектность теплосчетчиков

Наименование	Обозначение	Количество
Теплосчётчик компактный ТСУ*	-	1 шт.
Паспорт	AV2019.001.UL01	1 экз.
Руководство по эксплуатации	AV2019.001 PЭ	1 экз.
Методика поверки*	ИЦРМ-МП-139-19	1 экз.
Комплект монтажных частей и принадлежностей*	-	1 шт.
* - В зависимости от заказа.		

Поверка

осуществляется по документу ИЦРМ-МП-139-19 «ГСИ. Теплосчётчики компактные ТСУ. Методика поверки», утвержденному ООО «ИЦРМ» 21.08.2019 г.

 $^{^{2)}}$ В зависимости от выбранного интерфейса, частоты опроса теплосчетчиков и замены элементов питания.

Основные средства поверки:

- рабочий эталон 3-го разряда по ГПС (часть 1), утвержденной приказом Росстандарта от 27.02.2018 г. № 256 (диапазон воспроизведений массового (объемного) расхода от 0,0005 до 4000 т/ч (м³/ч) с пределами допускаемой относительной погрешности воспроизведений δ_0 =±(0,10, 0,30) %);
- термостаты переливные прецизионные ТПП-1 (регистрационный номер и Федеральном информационном фонде 33744-07);
- термометры лабораторные электронные ЛТ-300 (регистрационный номер в Федеральном информационном фонде 61806-15);
- секундомер электронный с таймерным выходом СТЦ-2М (регистрационный номер в Федеральном информационном фонде 65349-16).

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых теплосчетчиков с требуемой точностью.

Знак поверки наносится на пломбы организации, осуществляющей поверку, согласно рисунку 2, а также в паспорт и (или) свидетельство о поверке.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к теплосчётчикам компактным ТСУ

ГОСТ Р ЕН 1434-1-2011 Теплосчетчики. Часть 1. Общие требования

Приказ Росстандарта от 7 февраля 2018 г. № 256 Об утверждении Государственной поверочной схемы для средств измерений массы и объема жидкости в потоке, объема жидкости и вместимости при статических измерениях, массового и объемного расходов жидкости

ТУ 4219-001-12155245-2019 Теплосчётчики компактные ТСУ. Технические условия

Изготовитель

Общество с ограниченной ответственностью «Научно-производственное объединение АВЕКТРА» (ООО «НПО АВЕКТРА»)

ИНН 6155071020

Адрес: 394043, Воронежская обл., г. Воронеж, ул. Ленина, дом 96 литер к, офис 8

Телефон: +7 (800) 500-90-32 Web-сайт: <u>www.avektra.ru</u> E-mail: mail@avektra.ru

Испытательный центр

Общество с ограниченной ответственностью «Испытательный центр разработок в области метрологии»

Адрес: 117546, г. Москва, Харьковский проезд, д.2, этаж 2, пом. І, ком. 35,36

Телефон: +7 (495) 278-02-48

E-mail: info@ic-rm.ru

Аттестат аккредитации ООО «ИЦРМ» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.311390 от 18.11.2015 г.

Заместитель
Руководителя Федерального
агентства по техническому
регулированию и метрологии

М.п. « »	2019 г.	
----------	---------	--