ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Твердомер Р-400

Назначение средства измерений

Твердомер Р-400 (далее по тексту - твердомер) предназначен для автоматического измерения твердости в единицах Бринелля в соответствии с ГОСТ 9012-59 цельнокатаных железнодорожных колес, изготовленных по ГОСТ 10791-2011, в технологическом потоке на АО «Выксунский металлургический завод».

Описание средства измерений

Принцип действия твердомера основан на измерении твердости по методу Бринелля и заключается в статическом приложении нагрузки на образец, с выдержанным временным интервалом при помощи индентора - металлического шарика, с последующим измерением диаметра его отпечатка оптической системой в двух взаимно перпендикулярных направлениях.

Твердомер представляет собой стационарно установленную измерительную платформу состоящую из блока нагружения, измерительного блока и блока управления.

Блок нагружения служит для подъема, фиксации испытуемого образца и состоит из механизма воспроизведения нагрузки, системы отсчета времени при проведении испытаний.

Измерительный блок предназначен для контроля цикла нагружения и определения размера отпечатка индентора, и включает в себя электронно-оптическую камеру и датчики нагрузки.

Блок управления выполняет функции регулирования цикла нагружения, а также вывода результатов измерений, состоит из пульта оператора, с набором функциональных клавиш и монитора ЭВМ.

Пломбирование твердомера Р-400 не предусмотрено, ограничение доступа метрологически значимым функциям обеспечивается конструкцией.

Общий вид твердомера и блока управления, представлен на рисунках 1,2.

Рисунок 2 - Блок управления твердомера Р-400

Программное обеспечение

Программное обеспечение твердомера P-400 защищено от преднамеренных изменений паролем и исключает возможность несанкционированного влияния на ПО и измерительную информацию.

Программное обеспечение является неизменным. Средства для программирования или изменения метрологически значимых функций отсутствуют. Уровень защиты программного обеспечения «средний» в соответствии с Р 50.2.077-2014. Идентификационные данные программного обеспечения приведены в таблице 1.

Таблица 1 - Идентификационные данные программного обеспечения

Идентификационные данные (признаки)	Значение	
Идентификационное наименование ПО	HARDNESS	
Номер версии (идентификационный номер ПО)	1.0.0.1	
Цифровой идентификатор ПО	9200a3312c9951112c4452eb3de0c64f	

Метрологические и технические характеристики

Таблица 2 - Метрологические характеристики

Наименование параметра	Значение	
Испытательная нагрузка, кгс (Н)	3000 (29420)	
Пределы допускаемой относительной погрешности		
измерений испытательных нагрузок, %	± 1,0	
Диапазон измерений твердости в единицах Бринелля, НВ	от 140 до 450	
Пределы допускаемой относительной погрешности		
измерений твердости, %	± 3,0	

Таблица 3 - Основные технические характеристики

Наименование параметра Значение				
Длительность цикла нагружения, с, не более	20			
Вид индентора	шарик стальной			
Номинальное значение диаметра шарика и его	10±0,005			
отклонение, мм				
Масса твердомера, кг, не более	6200			
Параметры электрического питания:				
- напряжение переменного тока, В	380 ± 38			
- частота переменного тока, Гц	50 ± 1			
- потребляемая мощность, кВт, не более	10			
Габаритные размеры:				
- длина, мм, не более	2000			
- ширина, мм, более	3000			
- высота, мм, не более	2500			
Рабочие условия эксплуатации:				
- температура окружающего воздуха, °С	от +10 до +35			
- относительная влажность воздуха, %, не более	80			
- атмосферное давление, кПа	от 84,0 до 106			

Знак утверждения типа

наносится типографским способом на титульные листы эксплуатационной документации.

Комплектность средства измерений

Таблица 4 - Комплектность твердомера Р-400

Наименование	Обозначение	Количество
Измерительная платформа	P-400	1 шт.
Блок нагружения	-	1 шт.
Блок измерения	-	1 шт.
Блок управления	-	1 шт.
Руководство по эксплуатации «Твердомер Р-	-	1 экз.
400»		
Паспорт «Твердомер Р-400»	-	1 экз.

Поверка

осуществляется по документу ГОСТ 8.398-80 «Государственная система обеспечения единства измерений. Приборы для измерения твердости металлов и сплавов. Методы и средства поверки».

Основные средства поверки:

- меры твердости эталонные Бринелля 2-го разряда ГОСТ 9031-75;
- динамометр электронный 2-го разряда ГОСТ 8.640-2014, с верхним пределом измерений 30 кH.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные документы, устанавливающие требования к твердомеру Р-400

ГОСТ 8.062-85 Государственный специальный эталон и государственная поверочная схема для средств измерений твердости по шкалам Бринелля

ГОСТ 23677-79. Твердомеры для металлов. Общие технические требования

Изготовитель

Акционерное общество «Выксунский металлургический завод» (АО «ВМЗ»)

ИНН 5247004695

Адрес: 607060, Нижегородская область, г. Выкса, ул. Братьев Баташовых, 45

Тел.: 8 (800) 200-8000 Факс: +7 (83 177) 3-76-05 E-mail: <u>kantselyarya@vsw.ru</u> Web-сайт: www.omk.ru

Заявитель

Акционерное общество научно-исследовательский институт мостов и дефектоскопии (АО «НИИ мостов»)

ИНН 7838066524

Адрес: 190013, г. Санкт-Петербург, Московский проспект, 22, литер М, пом 6Н

Тел.: 8 (800) 200-8000 Факс: +7 (83 177) 3-76-05 E-mail: niim@niimostov.ru Web-сайт: www. niimostov.ru

Испытательный центр

Федеральное бюджетное учреждение «Государственный региональный центр стандартизации, метрологии и испытаний в Нижегородской области»

(ФБУ «Нижегородский ЦСМ»).

Адрес: 603950, г. Нижний Новгород, ул. Республиканская, д.1

Тел.: 8 (800) 200-22-14 Факс: +7 (831) 428- 57-48 E-mail: mail@nncsm.ru

Регистрационный номер 30011-13 в Реестре аккредитованных лиц в области обеспечения единства измерений Росаккредитации.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

А.В. Кулешов

М.п. «____»____2020 г.