ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Частотомеры универсальные ЧЗ-95

Назначение средства измерений

Частотомер универсальный Ч3-95 (далее – прибор) предназначен для измерения частоты колебаний непрерывных синусоидальных сигналов в диапазоне частот от 37,5 ГГц до 78,33 ГГц, а также для измерения частоты (периода) непрерывных синусоидальных и видеоимпульсных сигналов, временных параметров видеоимпульсных сигналов (длительности, периода следования, длительности фронта и спада импульсов), интервалов времени в диапазоне частот от 0,001 Гц до 300 МГц.

Описание средства измерений

Принцип действия прибора основан на формировании на установленном уровне входного сигнала и последующем измерении интервала T_x , равного при временных измерениях измеряемому параметру (длительности импульса, длительности фронта или спада импульса, длительности интервала времени) или целому числу периодов входного сигнала за установленное время измерения (счета) t_c при измерении частоты и периода сигнала.

Интервал времени T_x измеряется интерполяционным методом.

Высокая точность измерений обеспечивается внутренним опорным кварцевым термостатированным генератором. Возможна работа прибора от внешнего источника опорного сигнала. Внешний или внутренний опорный сигнал подается также на наружный разъем и может быть использован для синхронизации внешних устройств.

Работа прибора осуществляется под контролем встроенного микропроцессорного устройства, которое обеспечивает управление режимами работы, отображение параметров и результатов измерения на экране, а также дистанционное управление по интерфейсу RS-232, ETHERNET и последовательно-параллельному интерфейсу КОП.

Разъемы интерфейсов RS-232, КОП и ETHERNET выведены на заднюю панель прибора для осуществления работы в режиме дистанционного управления.

Прибор имеет конструкцию настольного исполнения и выполнен в унифицированном корпусе типа «Надел-85».

Каркас прибора состоит из двух боковых стенок, верхней и нижней крышек. На нижней крышке расположены съемные ножки прибора.

Управление прибора осуществляется с помощью клавиатуры, размещенной на передней панели прибора.

Передняя панель состоит из несущей панели, на которой закреплены печатная плата клавиатуры с кнопочными переключателями управления и световыми индикаторами, входные ВЧ разъемы и графический жидкокристаллический дисплей с адаптером ЖКИ и индикатор счёта.

Индикация режимов измерения, результатов измерения и вспомогательной информации осуществляется на экране графического дисплея в алфавитно-цифровой форме.

Между боковыми стенками закреплено горизонтальное шасси, на котором размещены печатные узлы функциональных частей прибора: преобразователь частоты; блок счетный, генератор ударного возбуждения (ГУВ) 2 шт., узел источников питания, блок опорных частот с кварцевым генератором, устройство микропроцессорное, формирователь сигналов, синтезатор частоты, интерфейс КОП.

Межузловые соединения выполнены с помощью ВЧ кабелей с соединителями врубного типа (SMB) и ленточных кабелей – шлейфов с НЧ соединителями.

Общий вид частотомера универсального ЧЗ-95 представлен на рисунке 1.

Схема пломбировки от несанкционированного доступа, обозначение мест нанесения знака поверки представлены на рисунке 2.

Рисунок 1 - Общий вид частотомера универсального ЧЗ-95

Рисунок 2 - Схема пломбировки от несанкционированного доступа, обозначение мест нанесения знака поверки

Программное обеспечение

Выполнение алгоритма функционирования прибора осуществляется программным обеспечением (ПО). ПО прибора имеет структуру с разделением на метрологически значимую и метрологически незначимую части.

Метрологически значимая часть включает в себя встроенное программное обеспечение, данные которого зашиты в постоянном запоминающем устройстве (ПЗУ), программируемой логической интегральной схеме (ПЛИС), микроконтроллере центрального процессора и предназначена для управления режимами работы прибора и индикации.

Встроенное ПО предназначено для приема внешних команд управления, изменения режимов работы в соответствии с полученными командами, приема внешних запросов о текущем состоянии при подключении к ПЭВМ, выполнения процедуры самотестирования и проведения калибровки.

ПЗУ хранит программу работы частотомера универсального. При включении прибора происходит перепись программы в оперативное запоминающее устройство (ОЗУ), используемое при работе прибора.

В энергонезависимой памяти центрального процессора хранятся калибровочные коэффициенты, версия ПО и другая информация, необходимая для функционирования прибора.

Метрологически незначимая часть ПО предназначена для дистанционного управления прибором через интерфейсы RS-232, КОП и ETHERNET.

Метрологически незначимая часть ПО управляется операционной системой Microsoft Windows XP SP2 или более поздней версией.

Диск с программным обеспечением ТНСК.00116 для дистанционного управления прибором входит в комплект поставки прибора (по отдельному заказу).

В приборе предусмотрены меры защиты от преднамеренного и непреднамеренного изменения ПО. Потребитель не имеет возможности обновления или загрузки новых версий ПО. В режиме внешнего управления реализовано однозначное назначение каждой команды в соответствии с руководством по эксплуатации, поэтому невозможно подвергнуть ПО приборов искажающему воздействию через интерфейсы пользователя. Без нарушения целостности заводских пломб и конструкции прибора невозможно удаление запоминающих устройств или их замена.

Метрологические характеристики нормированы с учетом влияния программного обеспечения.

Конструкция прибора исключает возможность несанкционированного влияния на ПО прибора и измерительную информацию.

Уровень защиты программного обеспечения от непреднамеренных и преднамеренных изменений в соответствии с P 50.2.077 – 2014 - высокий.

Таблица 1 - Идентификационные данные программного обеспечения

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	CH3_95
Номер версии (идентификационный номер) ПО	не ниже 1.0
Цифровой идентификатор ПО	0xAA3EC310
Алгоритм вычисления цифрового идентификатора ПО	CRC-32

Метрологические и технические характеристики

Таблица 2 - Метрологические характеристики

Наименование характеристики	Значение
Диапазон измеряемых частот по входам А и В, Гц	от 0,001 до 3·10 ⁸
Уровни входных сигналов, В:	
- синусоидальной формы	от 0,03 до 10
- видеоимпульсной формы	от 0,1 до 10
Минимальная длительность импульса, нс, не более	1,65
Диапазон измерения длительности импульсов положительной и отрицательной полярности по входам А и В на установленном уровне запуска при максимальной частоте следования не более 100 МГц, с	от 5·10 ⁻⁹ до 1·10 ³
Уровень входных видеоимпульсных сигналов, В	от 0,1 до 10

Продолжение таблицы 2

Наименование характеристики	Значение
Диапазон измерения длительности фронта и спада импульсов по	
ложительной и отрицательной полярности по входам А и В, нс	от 5 до 1·10 ⁵
Уровень входных видеоимпульсных сигналов, В	от 1 до 2
Диапазон измерения длительности интервала времени между	
импульсами положительной или/и отрицательной полярности,	
поступающих на входы А и В, на заданных уровнях запуска ка-	
налов А и В, с	от -1000 до +1000
Минимальная длительность импульсов, нс, не более	1,65
Уровень входных видеоимпульсных сигналов, В	от 0,1 до 10
Диапазон установки и индикации уровней запуска каналов А и В	
с учетом полярности сигнала в автоматическом (при частоте си-	от -2 до +2
нусоидальных колебаний или частоте следования импульсов не	01 -2 до +2
менее 1 кГц) или в ручном режимах, В	
Пределы допускаемой абсолютной погрешности установки	±0,01
уровней запуска, В	±0,01
Пределы допускаемой относительной погрешности измерения	$\pm (\delta_{o} + \delta_{3a\pi} + \Delta t_{p} /t_{c})^{*1}$
частоты по входам A и B , δ (f, P)	
Пределы допускаемой погрешности запуска, $\delta_{\text{зап}}$	$\pm 2 \times (3\sigma_{\text{III}} + U_{\text{II}}) / S \times_{c}^{*2}$
Пределы допускаемой абсолютной погрешности измерения вре-	
менных параметров импульсов Dt_x (длительность, фронт, спад) и	$(\delta_0 x_x + Dt_{cuc} + Dt_{yp} + Dt_{3an} + Dt_p)$ *
интервалов времени, с	
Диапазон измерения частоты непрерывных (НГ) синусоидаль-	от 37,5 до 78,33
ных колебаний по входу С, ГГц	· · · · · · · · · · · · · · · · · · ·
Уровень мощности входных сигналов по входу С, мВт	от 0,5 до 5
КСВН канала С, не более	3
Пределы допускаемой относительной погрешности измерения	$\pm [\delta_0 + \delta_{np}(t_c) + K \cdot \delta_{\text{дискр}}]^{*4}$
частоты сигналов по входу C, df	±[оо т опр(се) те одискрј
Номинальное значение частоты внутреннего кварцевого генера-	10
тора, МГц	10
Относительная погрешность по частоте кварцевого генератора	
при выпуске прибора, по истечении времени установления ра-	±2×10 ⁻⁸
бочего режима не менее 1 ч	
Относительная погрешность по частоте кварцевого генератора	±2×10 ⁻⁷
через 10 мин после включения прибора	-2/40
Относительная погрешность по частоте кварцевого генератора	±2×10 ⁻⁷
за 24 мес по истечении времени установления рабочего режима	
Пределы коррекции частоты кварцевого генератора относитель-	±3×10 ⁻⁷
но номинального значения	
Частота внешнего источника опорного сигнала напряжением от	5 или 10
0,2 до 1 В на нагрузке 50 Ом, МГц	3 HJIII 10
Частота выходного опорного сигнала с размахом не менее	
1 В на нагрузке 50 Ом при работе от внутреннего или внешнего	5 и 10
источника опорного сигнала, МГц	
Устанавливаемое время счета tc, мс	1×10^{-3} ; 1×10^{-2} ; 1×10^{-1} ; 1; 10;
	10^2 ; 1×10^3 ; 1×10^4 ; $1 \times 10^5 \times 10^5$

Продолжение таблицы 2

Наименование характеристики Значение

 $*^{1}$ где δ_{o} – относительная погрешность по частоте опорного генератора;

 $\delta_{3a\pi}$ — относительная погрешность запуска — случайная составляющая погрешности, обусловленная влиянием внутренних шумов измерительного тракта, отношением сигнал/шум входного сигнала и крутизной перепада напряжения входного сигнала в точке запуска;

 Δt_p – аппаратурная разрешающая способность измерения – случайная составляющая погрешности, обусловленная несовпадением фаз входного и опорного сигналов, с;

 t_{c} – установленное время счета, с.

 $*^2$ где $\sigma_{\text{ш}}$ — приведенное к входу измерительного тракта среднеквадратическое значение шума в рабочей полосе частот.

U_п – напряжение помехи входного сигнала (пиковое значение), В;

S – крутизна перепада напряжения входного сигнала в точке запуска, B/c;

 $t_{\rm c}$ – установленное время счета, с.

 $*^3$ где δ_o – относительная погрешность по частоте опорного генератора;

t_x - измеряемый временной интервал, с;

 Dt_{cuc} — систематическая погрешность измерения, обусловленная неидентичностью трактов интерполяционного преобразования, с;

 Dt_{yp} – погрешность измерения, обусловленная погрешностью установки уровней запуска, с;

 Dt_{san} — случайная составляющая погрешности, обусловленная влиянием шумов измерительных трактов, отношением сигнал/шум входного сигнала и крутизной перепада напряжения входного сигнала в точке запуска, с;

 Δt_p – аппаратурная разрешающая способность измерения – случайная составляющая погрешности, обусловленная несовпадением фаз входного и опорного сигналов, с;

 $*^4$ где: f_x – значение несущей частоты сигнала;

 $\delta_{np}(t_c)$ — относительная погрешность преобразования несущей частоты входных сигналов в диапазон промежуточных частот f_{nq} , обусловленная отклонением частоты гетеродина на интервале времени счета tc;

K – коэффициент преобразования; $K = f_{\pi y} / f_x$;

 $f_{\text{пч}}$ – преобразованная (промежуточная) частота, измеряемая частотомером;

 $\delta_{\text{дискр}}$ — аппаратная погрешность однократного измерения промежуточной частоты $f_{\text{пч}}$ сигнала, при времени счета t_{c} ; $\delta_{\text{дискр}} = \Delta t_{\text{p}}/t_{\text{c}}$.

*⁵ Реальное время счета устанавливается автоматически равным целому числу периодов входного сигнала с учетом выбранного времени счета, но не может быть менее одного периода входного сигнала

Таблица 3 - Основные технические характеристики

Наименование характеристики	Значение
Параметры электрического питания:	
- напряжение переменного тока, В	220±22
- частота переменного тока, Гц	50±1
Потребляемая мощность, ВА, не более	100
Габаритные размеры средства измерений, мм, не более	
- высота	130,5
- ширина	299
- длина	433

Продолжение таблицы 2

Наименование характеристики	Значение
Масса, кг, не более	8,5
Условия эксплуатации:	
- температура окружающего воздуха, °С	от -10 до +40
- относительная влажность воздуха при температуре 30 °C, %	95
- атмосферное давление, кПа	от 60 до 106
Средний срок службы, лет	15
Средняя наработка на отказ, ч	15000

Знак утверждения типа

наносится на титульный лист руководства по эксплуатации и формуляра типографским способом и на приборы сеткографическим способом.

Комплектность средства измерений

Таблица 4 - Комплектность средства измерений

Наименование, тип	Обозначение	Количество
Частотомер универсальный Ч3-95	THCK.411142.006	1 шт.
Комплект принадлежностей	ТННК.411918.004	1 шт.
Руководство по эксплуатации	ТНСК.411142.006РЭ	1 экз.
Формуляр	ТНСК.411142.006ФО	1 экз.
Ящик укладочный	THCK.323365.004	1 шт.

Поверка

осуществляется по документу ТНСК.411142.006РЭ «Частотомер универсальный Ч3-95. Руководство по эксплуатации» раздел 7 «Поверка прибора», утвержденному ФБУ «Нижегородский ЦСМ» 23 октября 2019 г.

Основные средства поверки:

- генератор сигналов высокочастотный $\Gamma 4-229$ (регистрационный номер в Федеральном информационном фонде 48133-11);
- генератор сигналов высокочастотный $\Gamma 4 232$ (регистрационный номер в Федеральном информационном фонде 63419-16);
- генератор сигналов высокочастотный $\Gamma 4 141$ (регистрационный номер в Федеральном информационном фонде 6861-78);
- генератор сигналов высокочастотный $\Gamma 4 142$ (регистрационный номер в Федеральном информационном фонде 6890-78);
- ваттметр поглощаемой мощности M3-22A (регистрационный номер в Федеральном информационном фонде 8749-82);
- головка термисторная M5-49 (регистрационный номер в Федеральном информационном фонде 2614-70);
- головка термисторная M5-50 (регистрационный номер в Федеральном информационном фонде 3245-72);
- генератор испытательных импульсов $\Gamma 9 1 A$ (регистрационный номер в Федеральном информационном фонде 68667-17);
- стандарт частоты и времени рубидиевый 41 1011 (регистрационный номер в Федеральном информационном фонде 57152-14);
- частотомер универсальный ЧЗ –86A (регистрационный номер в Федеральном информационном фонде 45245-10);
- осциллограф универсальный двухканальный широкополосный C8 56 (регистрационный номер в Федеральном информационном фонде 74869-19);
- вольтметр универсальный В7-81 (регистрационный номер в Федеральном информационном фонде 36478-07).

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых частотомеров универсальных Ч3-95 с требуемой точностью.

Знак поверки наносится давлением на специальную мастику пломб, которые расположены на задней панели в местах крепления верхней и нижней крышек и над потенциометром «КОРР ЧАСТ».

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к частотомерам универсальным ЧЗ-95

ГОСТ 22335-98 Частотомеры электронно-счетные. Общие технические требования и методы испытаний

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия

ТНСК.411142.006 ТУ Частотомер универсальный ЧЗ-95. Технические условия

TP TC 004/2011 Технический регламент Таможенного союза «О безопасности низковольтного оборудования»

ТР ТС 020/2011 Технический регламент Таможенного союза «Электромагнитная совместимость технических средств

Изготовитель

Акционерное общество «Научно-производственная фирма «Техноякс»

(АО «НПФ «Техноякс»)

ИНН 7719247218

Адрес: 105484, г. Москва, 16-я Парковая ул., д. 30 Телефон: (499) 464-23-47, факс: (499) 464-59-81

Web-сайт: <u>www.tehnojaks.com</u> E-mail: <u>mail@tehnojaks.ru</u>

Испытательный центр

Федеральное бюджетное учреждение «Государственный региональный центр стандартизации, метрологии и испытаний в Нижегородской области» (ФБУ «Нижегородский ЦСМ»)

Адрес: 603950, г. Нижний Новгород, ул. Республиканская, д. 1

Телефон: (831) 428-78-78, факс: (831) 428-57-48

Web-сайт: <u>www.nncsm.ru</u> E-mail: mail@nncsm.ru

Регистрационный номер 30011-13 в Реестре аккредитованных лиц в области обеспечения единства измерений Росаккредитации.

Заместитель
Руководителя Федерального
агентства по техническому
регулированию и метрологии

	\mathbf{r}	TC
Λ	н	Куленнов
\neg	. LJ.	

М.п.	// "	2020 1
IVI.II.	« »	ZUZU 1