ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Преобразователи напряжения измерительные АР6200

Назначение средства измерений

Преобразователь напряжения измерительный AP6200 (далее по тексту – преобразователь) предназначен для измерений напряжения постоянного и переменного тока при регистрации, анализе и постобработке сигналов с различных устройств, поступающих на его вход.

Описание средства измерений

Принцип действия преобразователя основан на параллельной (одновременной) дискретизации до 4-х входных аналоговых сигналов с помощью 16-и битного АЦП и их последующей непрерывной передаче в персональный компьютер (ПК) для анализа с помощью специализироанного программного обеспечения. Преобразователь оснащён встроенной памятью для предотвращения потери данных при высокой загрузке ПК.

Конструктивно преобразователь представляет собой блок ввода и преобразования сигналов и выпускается в пластиковом корпусе. Обмен данными с ПК и питание преобразователя осуществляются по интерфейсу USB 2.0 через разъём mini-USB. Количество аналоговых измерительных каналов одного модуля – 4. В комплект входит многофункциональная подставка, позволяющая установить преобразователь на стол, DIN-рейку или стену.

Преобразователь позволяет:

- проводить анализ сигналов с помощью программных измерительных приборов в реальном времени и в отложенном режиме;
 - обрабатывать сигналы с помощью гибко настраиваемых цифровых фильтров;
- проводить непрерывную запись сигналов в постоянную память ПК для их последующего отложенного анализа;
 - воспроизводить записанные ранее сигналы;
 - проводить суммирование сигналов с разными весовыми коэффициентами.

Преобразователь реализует функции следующих измерительных приборов: «Амплитудно-фазовая частотная характеристика», «Взаимный спектр», «Частотомер», «Модальный анализ», «Октавный анализ», «Осциллограф», «Спектроанализатор», «Спектр огибающей», «Вольтметр переменного тока», «Вольтметр постоянного тока».

Внешний вид преобразователя и схема пломбировки от несанкционированного доступа представлены на рисунке 1.

Рисунок 1 – Внешний вид преобразователя

Программное обеспечение

Программное обеспечение (далее по тексту – Π O) предназначено для установления требуемых режимов работы, обеспечения функций математической обработки сигналов, управления преобразователем, записи и отображения результатов измерений.

Уровень защиты ПО соответствует уровню «низкий» по Р 50.2.077–2014. ПО не требует специальных средств защиты от преднамеренного воздействия. Целостность ПО проверяется расчетом цифрового идентификатора (контрольной суммы исполняемого кода) с использованием алгоритма CRC-32. Характеристики ПО приведены в таблице 1.

Таблица 1 – Характеристики ПО

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	АБКЖ.00029-01
Номер версии (идентификационный номер) ПО, не ниже	0.45.0
Цифровой идентификатор ПО (с использованием алгоритма CRC32)	*

^{* -} Цифровой идентификатор программного обеспечения (контрольная сумма исполняемого кода) указывается в паспорте АБКЖ.411168.003 ПС

Метрологические и технические характеристики

Таблица 2 – Метрологические характеристики

таолица 2 пистрологи пеские характеристики	
Наименование характеристики	Значение
Диапазоны измеряемого напряжения постоянного и переменного	
тока (амплитудные значения), мВ	±10000
Пределы допускаемой абсолютной погрешности измерений напря-	$\pm (0.003 \cdot U_{BX} + 1),$
жения в диапазоне частот от 0 до 1 кГц включительно, мВ	где $U_{\text{вх}}$ – измеренное зна-
	чение напряжения, мВ
Полоса пропускания, кГц	от 0 до 450
Неравномерность частотной характеристики относительно частоты	
1 кГц, %, в пределах:	
- от 1 до 100 кГц включительно	±1
- св. 100 кГц до 200 кГц включительно	±2
- св. 200 кГц до 250 кГц включительно	±3
- св. 250 кГц до 350 кГц включительно	±7
- св. 350 кГц до 450 кГц включительно	±15

Таблица 3 – Основные технические характеристики

Наименование характеристики	Значение
Напряжение питания постоянного тока, В	5,0±0,1
Входное сопротивление, МОм, не менее	900
Рабочие условия эксплуатации:	
- температура окружающего воздуха, °С	от 0 до +55
- относительная влажность воздуха при температуре 20 °C, %	до 80
Масса преобразователя, кг, не более	0,5
Габаритные размеры (длина × ширина × высота), мм, не более	170×45×115
Гарантийный срок хранения с момента изготовления, месяцев	42
Гарантийный срок эксплуатации с момента поставки заказчику, месяцев	36

Знак утверждения типа

наносится на заднюю панель с помощью самоклеющейся плёнки, а также на заглавный лист паспорта АБКЖ.411168.003ПС и руководства по эксплуатации АБКЖ.411168.003РЭ типографским способом в левом верхнем углу.

Комплектность средства измерений

Таблица 4 – Комплектность поставки преобразователя

Наименование	Обозначение	Количество
Преобразователь напряжения измерительный АР6200	АБКЖ.411168.003	1 шт.
Преобразователь напряжения измерительный AP6200. Паспорт	АБКЖ.411168.003ПС	1 шт.
Преобразователь напряжения измерительный AP6200. Руководство по эксплуатации	АБКЖ.411168.003РЭ	
Программное обеспечение «GTLab»	АБКЖ.00029-01	одно на
Программное обеспечение «GTLab». Руководство оператора	АБКЖ.00029-01 34	партию
Преобразователи напряжения измерительные AP6200. Методика поверки	А3009.0327.МП-2020	
Съёмная 20-клеммная колодка с винтовыми зажимами		2 шт.
Кабель интерфейсный USB Type A – USB Mini-B 2 м		1 шт.
Подставка		1 шт.
Комплект для крепления преобразователя на DIN-рейку		1 шт.

Поверка

осуществляется по документу A3009.0327.МП-2020 «Преобразователи напряжения измерительные AP6200. Методика поверки», утвержденному ФГУП «РФЯЦ-ВНИИЭФ» 23.01.2020 г.

Основные средства поверки: калибратор многофункциональный Fluke 5522A рег. № 51160-12.

Допускается применение аналогичных средств измерений, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке и (или) паспорт.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к преобразователям напряжения измерительные AP6200

Приказ Федерального агентства по техническому регулированию и метрологии от 29.05.2018 № 1053 «Об утверждении Государственной поверочной схемы для средств измерений переменного электрического напряжения до 100 В в диапазоне частот от $1 \cdot 10^{-1}$ до $2 \cdot 10^{-9}$ Γ ц»

Приказ Федерального агентства по техническому регулированию и метрологии от 30.12.2019 № 3457 «Об утверждении Государственной поверочной схемы для средств измерений постоянного электрического напряжения и электродвижущей силы»

АБКЖ.411168.003ТУ Преобразователь напряжения измерительный AP6200. Технические условия

Изготовитель

Общество с ограниченной ответственностью «ГлобалТест» (ООО «ГлобалТест»)

ИНН 5254021532

Адрес: 607185, г. Саров Нижегородской обл., ул. Павлика Морозова, д. 6

Телефон: (83130) 67777 Факс: (83130) 67778 E-mail: mail@globaltest.ru Web-site: www.globaltest.ru

Испытательный центр

Федеральное Государственное унитарное предприятие «Российский федеральный ядерный центр - Всероссийский научно-исследовательский институт экспериментальной физики» (Φ ГУП «Р Φ ЯЦ-ВНИИЭ Φ »)

Адрес: 607188 г. Саров Нижегородской обл., пр. Мира, д. 37

Телефон: (83130) 22224, 23375

Φακc: (83130) 22232 E-mail: shvn@olit.vniief.ru

Аттестат аккредитации ФГУП «РФЯЦ-ВНИИЭФ» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.311769 от 23.08.2016 г.

Заместитель			
Руководителя Федерального			
агентства по техническому			
регулированию и метрологии			А.В. Кулешов
	М.п.	« »	2020 г.