ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Счетчики-расходомеры массовые Micro Motion

Назначение средства измерений

Счетчики-расходомеры массовые Micro Motion (далее по тексту – CPM) предназначены для измерений массового расхода и массы жидкости в составе измерительной линии систем измерений количества нефтепродуктов.

Описание средства измерений

Принцип действия СРМ основан на использовании силы Кориолиса, значение которой зависит от массы жидкости и скорости ее движения по трубкам сенсора, следовательно, пропорционально массовому расходу рабочей жидкости. При прохождении рабочей жидкости по двум трубкам первичного преобразователя (сенсора), которые колеблются с одинаковой частотой, возникает разность фаз колебаний трубок. Данный сигнал передается на трансмиттер 2700R, где обрабатывается и преобразуется в измерительную информацию.

Выходным сигналом трансмиттера 2700R является последовательность импульсов, частота следования, которых пропорциональна массовому расходу жидкости.

CPM состоят из сенсора модели CMF400M460NWEZEZZZ и трансмиттера модели 2700R12AEGEZWZ.

Отклонение температуры рабочей среды от температуры калибровки компенсируется установкой нуля СРМ.

Общий вид СРМ представлен на рисунке 1.

Рисунок 1 - Общий вид СРМ

Трансмиттер пломбируется с помощью проволоки и свинцовой (пластмассовой) пломбы. Место пломбировки СРМ представлено на рисунке 2.

Рисунок 2 - Схема пломбировки СРМ

Программное обеспечение

Программное обеспечение (далее по тексту — Π O) является встроенным. Π O имеет программную и физическую защиту от непреднамеренных и преднамеренных изменений. Программная защита обеспечивается разграничением прав пользователей, введением паролей, а также функцией защиты конфигурации. Физическая защита обеспечивается пломбированием клемм порта обслуживания. Π O CPM имеет уровень защиты «высокий» по P 50.2.077-2014.

Идентификационные данные ПО приведены в таблице 1.

Таблица 1 – Идентификационные данные ПО

таолица т тідентификационные данные по		
Идентификационные данные (признаки)	Значение	
Наименование ПО	2000 series firmware	
Идентификационное наименование ПО	-	
Номер версии (идентификационный номер) ПО	4.0/1.0 2.0 Profibus 4.0 Fieldbus	
Цифровой идентификатор ПО	-	
Алгоритм вычисления цифрового идентификатора ПО	-	

Метрологические и технические характеристики

Метрологические и основные технические характеристики СРМ, включая показатели точности и физико-химические свойства измеряемой среды, приведены в таблицах 2, 3.

Таблица 2 – Метрологические характеристики

Наименование характеристики	Значение
Диапазон измерений массового расхода жидкости, т/ч	от 30 до 310
Пределы допускаемой относительной погрешности при из-	$\pm 0,25$
мерениях массового расхода и массы жидкости, %	=0,23

Таблица 3 – Основные технические характеристики

Наименование характеристики	Значение
Номинальный диаметр	DN 100
Выходной сигнал	Импульсный, частотой до 10 кГц
Температура измеряемой среды, °С	от -30 до +50
Избыточное давление измеряемой среды, МПа, не бо-	1,6
лее	1,0
Плотность жидкости в рабочем диапазоне температу-	922,1
ры, $\kappa \Gamma / M^3$, не более	722,1

Продолжение таблицы 3

Наименование характеристики	Значение
Кинематическая вязкость жидкости, сСт, не более	11,4
Потребляемая мощность, Вт, не более	11
Параметры окружающей среды:	
- температура, °С	от -35 до +30
- относительная влажность, %	от 5 до 95
Параметры электропитания:	
- напряжение питания, В	220 (+10 %, -15 %)
- частота, Гц	50
Габаритные размеры, длина х ширина х высота, мм, не	
более	
- трансмиттер 2700R	120x233x214
- сенсор	1021x1118x274
Масса, кг, не более	
- трансмиттер 2700R	3,6
- сенсор	200

Знак утверждения типа

наносится на маркировочную табличку методом наклейки и на центральную часть титульных листов паспорта типографским способом

Комплектность средства измерений

Комплектность СРМ приведена в таблице 4.

Таблица 4 – Комплектность СРМ

Наименование	Обозначение	Количест-	
		BO	
Счетчик-расходомер массовый Micro Motion. Зав. №14295339		1 экз.	
Счетчик-расходомер массовый Micro Motion. Зав. №14289015		1 экз.	
Счетчик-расходомер массовый Micro Motion. Зав. №14288866		1 экз.	
Счетчик-расходомер массовый Micro Motion. Зав. №14296579		1 экз.	
Счетчик-расходомер массовый Micro Motion. Зав. №14288596		1 экз.	
Счетчик-расходомер массовый Micro Motion. Зав. №14288865		1 экз.	
Счетчик-расходомер массовый Micro Motion. Зав. №14288185		1 экз.	
Счетчик-расходомер массовый Micro Motion. Зав. №14289014		1 экз.	
Комплект эксплуатационных документов фирмы «Emerson		1 экз.	
Process Management/ Micro Motion Inc.»		1 3 K3.	
Методика поверки	МП 1059-9-2019	1 экз.	

Поверка

осуществляется по документам МП 1059-9-2019 «Инструкция. ГСИ. Счетчики-расходомеры массовые Micro Motion. Методика поверки», утвержден ВНИИР — филиал ФГУП «ВНИИМ им. Д.И. Менделеева» 20.03.2020 г.; МИ 3272-2010 «ГСИ. Счетчики-расходомеры массовые. Методика поверки на месте эксплуатации компакт-прувером в комплекте с турбинным преобразователем расхода и поточным преобразователем плотности».

Основные средства поверки:

- рабочий эталон 1-го разряда с диапазоном расхода, соответствующим поверяемому СРМ и пределами допускаемой относительной погрешности не более ±0,05% в соответствии с Государственной поверочной схемой, утвержденной приказом Росстандарта от 07.02.2018 г. № 256;

- рабочий эталон 2-го разряда с диапазоном расхода, соответствующим поверяемому СРМ и пределами допускаемой относительной погрешности не более $\pm 0.1\%$ в соответствии с Государственной поверочной схемой, утвержденной приказом Росстандарта от 07.02.2018 г. \mathbb{N} 256.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых средств измерений с требуемой точностью.

Знак поверки наносится на свидетельство о поверке СРМ.

Сведения о методиках (методах) измерений

приведены в эксплуатационных документах.

Нормативные документы, устанавливающие требования к счетчикам-расходомерам массовым Micro Motion

Приказ Федерального агентства по техническому регулированию и метрологии от 7 февраля 2018 г. N 256 Об утверждении Государственной поверочной схемы для средств измерений массы и объема жидкости в потоке, объема жидкости и вместимости при статических измерениях, массового и объемного расходов жидкости

Изготовитель

Фирма «Emerson Process Management/ Micro Motion Inc.», США Адрес: 7070 Winchester Circle, Boulder, Colorado 80301 USA

Заявитель

Общество с ограниченной ответственностью «Инженерно-Внедренческий центр «Техномир» (ООО «ИВЦ «Техномир»)

ИНН 1659052683

Адрес: 420141, Республика Татарстан, г. Казань, ул. Сафиуллина, д.5

Телефон: +7 (843) 210-25-10 Факс: +7 (843) 210-26-10 Web-сайт: <u>www.ivc-rt.ru</u> E-mail: mail@ivc-rt.ru

Испытательный центр

Всероссийский научно-исследовательский институт расходометрии – филиал Федерального государственного унитарного предприятия «Всероссийский научно-исследовательский институт метрологии им. Д.И. Менделеева»

(ВНИИР – филиал ФГУП «ВНИИМ им. Д.И. Менделеева»)

Адрес: 420088, Республика Татарстан, г. Казань, ул. 2-я Азинская, 7 «а»

Телефон: +7 (843) 272-70-62 Факс: +7 (843) 272-00-32 E-mail: office@vniir.org

Регистрационный номер RA.RU.310592 в Реестре аккредитованных лиц в области обеспечения единства измерений Росаккредитации.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

А.В. Кулешов