ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Модули измерительные вибрационного контроля и диагностики МВК01

Назначение средства измерений

Модули измерительные вибрационного контроля и диагностики MBK01 (далее - модули) предназначены для измерения и передачи результатов измерений параметров вибрации и частоты вращения по сети Ethernet внешним устройствам.

Описание средства измерений

Принцип действия модулей измерительных вибрационного контроля и диагностики MBK01 основан на измерении поступающих на вход аналоговых сигналов напряжения от преобразователей вибрации и/или преобразователей частоты вращения (в состав не входят) и передачи результатов измерения по сети Ethernet внешним устройствам. Передача данных по сети Ethernet осуществляется посредством порта ввода-вывода стандарта IEEE802.3u (100BASE-TX) с возможностью получения электропитания по технологии PoE.

Модули представляют собой электронное устройства с десятью измерительными каналами. Восемь измерительных каналов предназначены для подключения преобразователей вибрации, имеющих встроенный предусилитель¹. Два канала предназначены для подключения преобразователей частоты вращения с выходным сигналом ТТЛ (логический ноль менее 0,4 В, логическая единица более 2,4 В).

Модули измерительные вибрационного контроля и диагностики МВК01 выпускаются в следующих исполнениях: МВК01-К20, МВК01-К65 и МВК01-Б, которые отличаются конструктивными особенностями и областью применения. Модули исполнения МВК01-К20 выпускаются в корпусе со степенью защиты оболочки от пыли и влаги IP20, предназначены для установки в монтажные шкафы. Модули исполнения МВК01-К65 выпускаются в корпусе со степенью защиты разъемов и оболочки от пыли и влаги IP65, предназначены для установки на или вблизи контролируемого оборудования. Модули исполнения МВК01-Б выпускаются без защитного корпуса, предназначены для объединения ряда модулей МВК01 в несущей конструкции (корзине) для размещения в специализированных стойках.

Общий вид, место нанесения знака утверждения типа и схема пломбирования от несанкционированного доступа модулей измерительных вибрационного контроля и диагностики МВК01 представлены на рисунках 1, 2 и 3.

Пломбирование модуля исполнения МВК01-К20 осуществляется на корпус модуля в виде индикаторной наклейки.

Пломбирование модуля исполнения МВК01-Б осуществляется на винт крепления боковой крышки в виде индикаторной наклейки.

Пломбирование модуля исполнения МВК01-К65 осуществляется мастикой на винт верхней крышки клеймом предприятия изготовителя.

¹ Предусилитель должен работать по технологии IEPE - ICP[®], Deltatron[®], Piezotron[®] или аналог.

Рисунок 1 - Общий вид, место нанесения знака утверждения типа и место пломбирования от несанкционированного доступа модулей измерительных вибрационного контроля и диагностики MBK01-K20

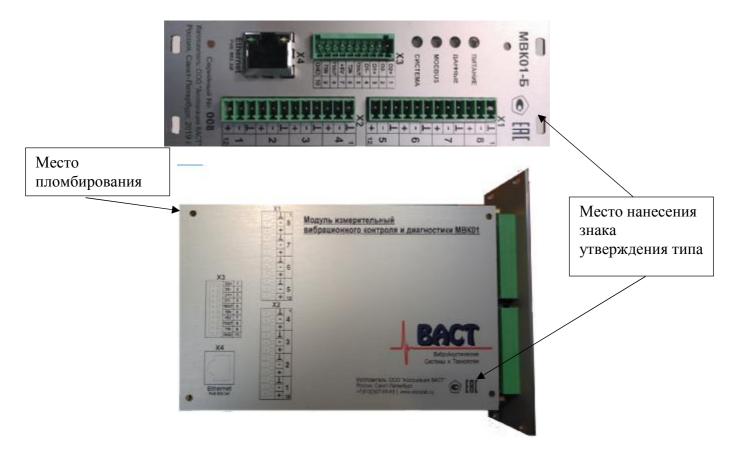


Рисунок 2 - Общий вид, место нанесения знака утверждения типа и место пломбирования от несанкционированного доступа модулей измерительных вибрационного контроля и диагностики МВК01-Б

Рисунок 3 - Общий вид, место нанесения знака утверждения типа и место пломбирования от несанкционированного доступа модулей измерительных вибрационного контроля и лиагностики MBK01-K65

Программное обеспечение

Модули измерительные вибрационного контроля и диагностики MBK01 имеют встроенное и внешнее программное обеспечение (далее – ΠO).

Модули измерительные вибрационного контроля и диагностики МВК01 функционируют под управлением встроенного программного обеспечения, которое предназначено для управления работой модуля и для математической обработки полученных результатов цифрового преобразования аналоговых сигналов первичных преобразователей.

Встроенное ΠO записано в микроконтроллере модуля MBK01 и является его неотъемлемой частью.

Конструкция модулей МВК01 исключает возможность несанкционированного влияния на встроенное ΠO и измерительную информацию.

Нарушение целостности метрологически значимой части программного обеспечения модуля приводит к завершению работы программного обеспечения. Метрологически значимая часть программного обеспечения модуля является неизменной.

Средства для внесения изменений в программное обеспечение модулей измерительных вибрационного контроля и диагностики МВК01 пользователю не предоставляются.

Внешнее ПО предназначено для настройки модуля. Предоставляемый пользователю интерфейс внешнего ПО не позволяет предпринять действия, приводящие к искажению результатов измерения и повреждению программного обеспечения модуля.

Уровень защиты программного обеспечения от непреднамеренных и преднамеренных изменений в соответствии с Р 50.2.077-2014 – высокий.

Идентификационные данные ПО приведены в таблице 1.

Таблица 1 – Идентификационные данные программного обеспечения

Tuotinga T Tigotimpinagnomisio gamisio nporpamin				
Идентификационные признаки	Значение			
Внешнее ПО				
Идентификационное наименование ПО	ТПО МВК			
Номер версии (идентификационный номер) ПО	1.0.16 и выше			
Внутреннее ПО				
Идентификационное наименование ПО	Измерительное ПО МВК (ИПО МВК)			
Номер версии (идентификационный номер) ПО	1.0.17.0 и выше			
Цифровой идентификатор ПО	3c5777e835846dbaefce0dc9ab45a696			
Алгоритм вычисления цифрового	MD5			
идентификатора ПО				

Метрологические и технические характеристики

Таблица 2 – Метрологические характеристики

Таолица 2 – Метрологические характеристики	
Наименование характеристики	Значение
Диапазон значений коэффициента преобразования, мB/(м·c ⁻²)	от 0,1 до 1000
Диапазон измерений СКЗ виброускорения на базовой частоте 160 Гц	
при коэффициенте преобразования (Кп) равном 10,2 мB/(м· c^{-2}), м/ c^2	от 0,1 до 340*
Диапазон измерений СКЗ виброскорости на базовой частоте 80 Гц при	
коэффициенте преобразования (Кп) равном 10,2 мВ/(м \cdot с ⁻²), мм/с	от 0,1 до 690*
Диапазон измерений СКЗ виброперемещения на базовой частоте 40 Гц	
при коэффициенте преобразования (Кп) равном 10,2 мВ/(м·с ⁻²), мкм	от 1 до 5400*
Диапазон рабочих частот при измерении виброускорения, Гц	от 0,5 до 20000
Диапазон рабочих частот при измерении виброскорости, Гц	от 0,5 до 7000
Диапазон рабочих частот при измерении виброперемещения, Гц	от 0,5 до 2000
Полосы пропускания полосовых фильтров, Гц	от 0,8 до 150
	от 0,8 до 300
	от 2 до 1000
	от 10 до 1000
	от 10 до 2000
	от 10 до 3000
Полосы пропускания полосовых фильтров по ГОСТ ISO 2954-2014,	от 2 до 1000
ГОСТ ИСО 10816-3-2002, ГОСТ ИСО 10816-4-2002, Гц	от 10 до 1000
	от 10 до 2000
Пределы допускаемой относительной погрешности измерений	
виброускорения, %:	
в диапазоне частот от 0,5 до 20000 Гц	±5
в диапазоне частот от 1,0 до 20000 Гц	±3
Пределы допускаемой относительной погрешности измерений	
виброскорости, %:	
в диапазоне частот от 0,5 до 7000 Гц	±5
в диапазоне частот от 1,0 до 7000 Гц	±3
Пределы допускаемой относительной погрешности измерений	
виброперемещения, %:	
в диапазоне частот от 0,5 до 2000 Гц	±5
в диапазоне частот от 1,0 до 2000 Гц	±3
Диапазон измерений частоты вращения, Гц	от 0,5 до 1000

Продолжение таблицы 2

Наименование характеристики	Значение
Пределы допускаемой относительной погрешности измерений	
частоты вращения, %:	±0,5
в диапазоне частот от 0,5 до 1000 Гц	±0,1
в диапазоне частот от 1 до 1000 Гц	
Класс 1/3 октавных фильтров (с центральными	
среднегеометрическими частотами: 0,63; 0,8; 1,0; 1,25; 1,60; 2,0; 2,5;	
3,15; 4,0; 5; 6,3; 8,0; 10; 12,5; 16,0; 20; 25; 31,5; 40; 50; 63; 80; 100; 125;	2
160; 200; 250; 315; 400; 500; 630; 800; 1000; 1250; 1600; 2000; 2500;	
3150; 4000; 5000; 6300; 8000; 10000) по ГОСТ Р 8.714-2010	

^{*} Диапазон измерений определен в зависимости от коэффициента преобразования и вычисляется по формулам:

Для виброускорения, м/c^2 от 1,02/Кп до 3468/Кп Для виброскорости, мм/c от 1,02/Кп до 7038/Кп Для виброперемещения, мкм от 10,2/Кп до 55080/Кп,

где Кп — числовое значение без единиц измерения номинального коэффициента преобразования используемого вибропреобразователя представленного в м $B/(m\cdot c^{-2})$

Таблица 3 – Основные технические характеристики

таолица 3 — Основные технические характеристики	2
Наименование характеристики	Значение
Диапазон частот входного сигнала, Гц	от 0,5 до 25600
Рабочие условия измерений для исполнений МВК01-К20 и МВК01-Б:	
- температура окружающей среды, °С	от -10 до +50
Рабочие условия измерений для исполнения МВК01-К65:	
- температура окружающей среды, °С	от -40 до +70
Входное сопротивление каналов измерения вибрации, кОм, не менее	70
Время установления рабочего режима с момента подачи питания, с, не	
более	30
Периодичность обновления значений измеряемых величин, с, не более	0,5
Протокол передачи результатов измерения параметров вибрации и	ModBus/TCP B
частоты вращения внешнему потребителю	локальной сети типа
	Ethernet в режиме
	Slave
Напряжение постоянного тока питания модуля, В	48±3
Технология подачи напряжения питания модуля	PoE
	(IEEE 802.3at, Type 1)
Потребляемая мощность, Вт, не более	10
Габаритные размеры, (ширина \times высота \times длина), мм, не более:	
исполнения МВК01-К65	260×188×91
исполнения МВК01-К20	106×49×197
исполнения МВК01-Б	41×129×179
Масса, кг, не более:	
исполнения МВК01-К65	2,83
исполнения МВК01-К20	0,54
исполнения МВК01-Б	0,42

Знак утверждения типа

наносится на корпус модуля способом машинной печати, на титульный лист руководства по эксплуатации и на титульный лист формуляра типографским способом.

Комплектность средства измерений

Таблица 4 – Комплектность средства измерений

Наименование	Обозначение	Кол-во	Примечание
Модуль измерительный вибрационного контроля и диагностики	MBK01-[X]	1 шт.	X – обозначение вида исполнения
Комплект соединительных кабелей			Поставляется по заказу. Количество, тип и длина определяется при заказе
Модуль автоматизированной поверки	МАП	1 шт.	Поставляется по заказу
Формуляр	ВАРБ.411711.112 Ф	1 экз.	
Руководство по эксплуатации	ВАРБ.411711.112 РЭ	1 экз.	
Методика поверки	ВАРБ.411711.112 Д	1 экз.	
Программное обеспечение	ТПО	1 шт.	

Поверка

осуществляется по документу ВАРБ.411711.112 Д «Модули измерительные вибрационного контроля и диагностики МВК01. Методика поверки», утвержденному 20.02.2020 г.

Основные средства поверки: генератор сигналов сложной формы со сверхнизким уровнем искажений DS360 (рег. № 45344-10), мультиметр цифровой 34401A (рег. № 16500-97).

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых модулей с требуемой точностью.

Знак поверки наносится на свидетельство о поверке и (или) в формуляр.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к модулям измерительным вибрационного контроля и диагностики МВК01

Приказ Федерального агентства по техническому регулированию и метрологии № 2772 от 27.12.2018г. «Об утверждении государственной поверочной схемы для средств измерений виброперемещения, виброскорости, виброускорения и углового ускорения»

ГОСТ 30296-95 Аппаратура общего назначения для определения основных параметров вибрационных процессов. Общие технические требования

ВАРБ.411711.112 ТУ Модули измерительные вибрационного контроля и диагностики МВК01. Технические условия

Изготовитель

Общество с ограниченной ответственностью «Ассоциация ВАСТ»

(ООО «Ассоциация ВАСТ»)

ИНН 7826690008

Адрес: 198207, Санкт-Петербург, пр. Стачек, дом 140

Телефон. +7 (812) 327 55 63 Факс: +7 (812) 324 6547 E-mail: vibro@vast.su Web-сайт: www.vibrotek.ru

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы»

Адрес: 119361, г. Москва, ул. Озерная, д. 46

Телефон: +7 (495) 437-55-77 Факс: +7 (495) 437-56-66 Web-сайт: <u>www.vniims.ru</u> E-mail: office@vniims.ru

Аттестат аккредитации ФГУП «ВНИИМС» по проведению испытаний средств измерений в целях утверждения типа № 30004-13 от 29.03.2018 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

А.В. Кулешов

М.п. «___ » _____ 2020 г.