ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Теплосчетчики ультразвуковые «ТСУ»

Назначение средства измерений

Теплосчетчики ультразвуковые «TCУ» (далее по тексту – теплосчетчики) предназначены для измерений количества тепловой энергии в водяных системах теплоснабжения.

Описание средства измерений

Принцип действия теплосчетчиков основан на преобразовании вычислителем сигналов, поступающих от измерительных преобразователей, в информацию об измеряемых параметрах теплоносителя с последующим вычислением на основании известных зависимостей количества тепловой энергии. Объем теплоносителя измеряется с помощью ультразвукового преобразователя расхода. Температура теплоносителя и разность температур теплоносителя в подающем и обратном трубопроводах измеряется при помощи комплекта платиновых термометров сопротивления – пары термометров сопротивления с номинальной статической характеристикой Pt1000 по ГОСТ 6651-2009.

Теплосчетчики состоят из тепловычислителя, датчика расхода и комплекта термометров сопротивления.

Тепловычислитель – микропроцессорное электронное устройство с жидкокристаллическим дисплеем, кнопкой управления или магнитоуправляемым контактом. Тепловычислитель осуществляет вычисление, индикацию, архивирование и передачу следующих измеренных и вычисленных значений:

- количества потребленной тепловой энергии Q с нарастающим итогом, Γ кал;
- объема теплоносителя в трубопроводе V с нарастающим итогом, M^3 ;
- температур теплоносителя в подающем t_1 и обратном t_2 трубопроводах и разности этих температур Δt , °C.

Теплосчетчики оснащены автономной литий-тионил-хлоридной батареей, от которой осуществляется электропитание.

Теплосчетчики выпускаются в трех модификациях: «TCУ-15.06», «TCУ-15.15» и «TCУ-20.25», которые отличаются диапазонами расходов теплоносителя. Каждая модификация имеет ряд исполнений, которые, которые отличаются типом интерфейсов связи. Структура условного обозначения теплосчетчиков представлена в таблице 1.

Теплосчетчик ультразвуковой «ТСУ-
$$\boxed{X}$$
 . \boxed{X} . \boxed{X} . \boxed{X} . \boxed{X} »

Таблица 1 – Структура условного обозначения

№ поля	Описание поля	Код поля	Расшифровка	
1	Диаметр условного	15	диаметр условного прохода 15 мм	
	прохода	20	диаметр условного прохода 20 мм	
2	Номинальный расход	06	номинальный расход 0,6 м ³ /ч	
		15	номинальный расход 1,5 м ³ /ч	
		25	номинальный расход 2,5 м ³ /ч	
3	Тип интерфейса связи	O	импульсные выходы	
		R RS-485		
		M	M-BUS	
		F	беспроводной, протокол обмена wM-BUS	
		L	беспроводной, протокол обмена LoRaWAN	
		N	беспроводной, протокол обмена NB-Fi	

Продолжение таблицы 1

№ поля	Описание поля	Код поля	Расшифровка
4	Наличие импульсных	I	с импульсными входами
	входов	без импульсных входов	
5	Наличие монтажного	МК	с монтажным комплектом
	комплекта		без монтажного комплекта

Теплосчетчики ведут часовые (глубина 64 суток), суточные (глубина 16 месяцев), месячные (глубина 20 лет) и годовые (глубина 20 лет) журналы, а также журнал нештатных ситуаций (глубина 512 записей).

Теплосчетчики могут устанавливаться как на подающий, так и на обратный трубопровод в закрытых системах тепло- и водоснабжения.

Общий вид теплосчетчиков представлен на рисунке 1.

Схема пломбировки от несанкционированного доступа представлена на рисунке 2.

Рисунок 1 – Общий вид теплосчетчиков

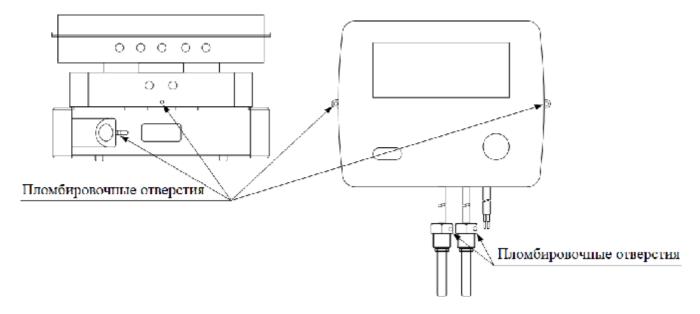


Рисунок 2 – Схема пломбировки от несанкционированного доступа

Программное обеспечение

Программное обеспечение (далее по тексту – Π O) теплосчетчиков по аппаратному обеспечению является встроенным и предназначено для преобразования и обработки измерительной информации. Π O хранится в энергонезависимой памяти. Программная среда постоянна, отсутствуют средства и пользовательская оболочка для программирования или изменения Π O.

- ПО разделено на метрологически значимую и незначимую часть. Разделение ПО выполнено внутри кода ПО на уровне языка программирования. К метрологически значимой части ПО относятся:
- программные модули, принимающие участие в обработке (расчетах) результатов измерений или влияющие на них;
- программные модули осуществляющие идентификацию, хранение, передачу измерительной информации, защиту ПО и данных.

Идентификационные данные ПО приведены в таблицах 2-5.

Уровень защиты ΠO «высокий» в соответствии с P 50.2.077-2014. Конструкция теплосчетчиков исключает возможность несанкционированного влияния на ΠO и измерительную информацию. Метрологические характеристики теплосчетчиков нормированы с учетом влияния ΠO .

Таблица 2 – Идентификационные данные программного обеспечения теплосчетчиков с типом интерфейса связи: импульсный выход, RS-485, M-BUS

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	TSU_110
Номер версии (идентификационный номер) ПО	1.10
Цифровой идентификатор ПО	4B9D
Алгоритм вычисления контрольной суммы исполняемого кода	CRC16

Таблица 3 – Идентификационные данные программного обеспечения теплосчетчиков с типом интерфейса связи: беспроводным, протокол обмена wM-BUS

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	TSU_210
Номер версии (идентификационный номер) ПО	2.10
Цифровой идентификатор ПО	CD6A
Алгоритм вычисления контрольной суммы исполняемого кода	CRC16

Таблица 4 – Идентификационные данные программного обеспечения теплосчетчиков с типом интерфейса связи: беспроводным, протокол обмена LoRaWAN

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	TSU 310
1	3.10
Номер версии (идентификационный номер) ПО	
Цифровой идентификатор ПО	01C9
Алгоритм вычисления контрольной суммы исполняемого кода	CRC16

Таблица 5 – Идентификационные данные программного обеспечения теплосчетчиков с типом интерфейса связи: беспроводным, протокол обмена NB-Fi

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	TSU_410
Номер версии (идентификационный номер) ПО	4.10
Цифровой идентификатор ПО	E21B
Алгоритм вычисления контрольной суммы исполняемого кода	CRC16

Метрологические и технические характеристики

Таблица 6 – Метрологические характеристики

	Модификация			
	«ТСУ-	«ТСУ-	«ТСУ-	
Наименование характеристики	15.06»	15.15»	20.25»	
		Значение		
Диаметр условного прохода, мм	15 20		20	
Класс точности по ГОСТ Р 51649-2014		2		
Расход теплоносителя, м ³ /ч:				
- нижний предел	0,006	0,015	0,025	
- номинальный	0,600	1,500	2,500	
- верхний предел	1,200	3,000	5,000	
Диапазон измерений температуры теплоносителя, °C	(от +5 до +95	5	
Диапазон измерений разности температур теплоносителя				
в подающем и обратном трубопроводах, °C		от +3 до +90		
Пределы допускаемой относительной погрешности измерений				
объема теплоносителя, %		$\pm(2+0.02\cdot G_{\rm B}/G),$		
	но не более ±5,0		5,0	
Пределы допускаемой абсолютной погрешности измерений				
температуры теплоносителя, °С	±((0,5+0,005)	· t)	
Пределы допускаемой относительной погрешности измерений				
разности температур теплоносителя в подающем и обратном				
трубопроводах, %		$\pm (0.5 + 3 \cdot \Delta t H/\Delta t)$		
Пределы допускаемой относительной погрешности измерений				
тепловой энергии, %	$\pm (3 + 4 \cdot \Delta t H/\Delta t + 0.02 \cdot GB/G)$			
Пределы допускаемой относительной погрешности измерений				
интервалов времени, %		$\pm 0,05$		
Примечания – В таблице приняты следующие обозначения: Св – верхний предел расхода				
теплоносителя, $M^3/4$; G – значение расхода теплоносителя, $M^3/4$; t – значение температуры				

Примечания — В таблице приняты следующие обозначения: Gв — верхний предел расхода теплоносителя, M^3/V ; G — значение разности температур теплоносителя, M^3/V ; $M^$

Таблица 7 – Основные технические характеристики

	N	Модификация		
	«ТСУ-	«ТСУ-	«ТСУ-	
Наименование характеристики		15.15»	20.25»	
		Значение		
Максимальное рабочее давление, МПа		1,6		
Напряжение питания от встроенного источника питания, В	3,0; 3,6			
Габаритные размеры, мм, не более				
- высота	83		93	
- длина	111 130		130	
- ширина	85 85		85	
Масса, кг, не более	0,7 0,8		0,8	
Условия эксплуатации:				
- температура окружающего воздуха, °С		от +5 до +50		
- относительная влажность при температуре +35 °C,				
%, не более	80			

Продолжение таблицы 7

	Модификация			
Наименование характеристики	«ТСУ-	«ТСУ-	«ТСУ-	
	15.06»	15.15»	20.25»	
		Значение		
Средний срок службы, лет		12		
Срок непрерывной работы от встроенного источника питания,				
лет, не менее		6		
Средняя наработка на отказ, ч		75000		

Знак утверждения типа

наносится на этикетку теплосчетчиков, расположенную на крышке, методом шелкографии или типографским способом и на титульный лист паспорта типографским способом.

Комплектность средства измерений

Таблица 8 – Комплектность средства измерений

Наименование	Обозначение	Количество
Теплосчетчик ультразвуковой «ТСУ»	-	1 шт.
Монтажный комплект	-	1 комплект. для «ТСУ-Х.Х.Х.Х.МК»
Паспорт	СЭТ.469333.147 ПС	1 экз.
Методика поверки	ОЦСМ 076196-2019 МП	1 экз. на партию

Поверка

осуществляется по документу ОЦСМ 076196-2019 МП «ГСИ. Теплосчетчики ультразвуковые «ТСУ». Методика поверки», утвержденному ФБУ «Омский ЦСМ» $20.01.2020~\mathrm{r}$.

Основные средства поверки:

- рабочий эталон 3-го разряда по ГПС, утвержденной приказом Росстандарта от 07.02.2018 г. №256, с пределами допускаемой относительной погрешности ± 0,5 % установка поверочная автоматизированная УПРС-5/1 (рег. №52183-12);
- рабочий эталон 3-го разряда по ГОСТ 8.558-2009 термометр сопротивления платиновый вибропрочный ТСПВ-1 (рег. №50256-12);
 - термостат низкотемпературный «Криостат A1» (рег. №23838-08);
- циркуляционные жидкостные термостаты LOIP LT-116a (2 шт.): диапазон воспроизводимых температур от $(t_{\rm okp}+10)$ до +100 °C; погрешность воспроизведения заданной температуры $\pm~0.1$ °C.

Допускается применения аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых теплосчетчиков с требуемой точностью.

Знак поверки наносится в паспорт или на свидетельство о поверке.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к теплосчетчикам ультразвуковым «ТСУ»

ГОСТ Р 51649-2014 Теплосчетчики для водяных систем теплоснабжения. Общие технические условия

ГОСТ 8.558-2009 ГСИ. Государственная поверочная схема для средств измерений температуры

Приказ Росстандарта от 07.02.2018 г. №256 Об утверждении Государственной поверочной схемы для средств измерений массы и объема жидкости в потоке, объема жидкости и вместимости при статических измерениях, массового и объемного расхода жидкости

СЭТ.469333.147 ТУ Теплосчетчики ультразвуковые «ТСУ». Технические условия

Изготовитель

Общество с ограниченной ответственностью «Сфера экономных технологий» (ООО «СЭТ») ИНН 5506227284

Адрес: 644021, г. Омск, ул. 7 Линия, д.132

Телефон: +7 (3812) 43-36-35 Web-сайт: <u>http://set-omsk.ru</u> E-mail: <u>mail@set-omsk.ru</u>

Испытательный центр

Федеральное бюджетное учреждение «Государственный региональный центр стандартизации, метрологии и испытаний в Омской области»

(ФБУ «Омский ЦСМ»)

Адрес: 644116, г. Омск, ул. 24 Северная, 117-А

Телефон (факс): +7 (3812) 68-07-99; +7 (3812) 68-04-07

Web-сайт: http://csm.omsk.ru E-mail: info@ocsm.omsk.ru

Аттестат аккредитации ФБУ «Омский ЦСМ» по проведению испытаний средств измерений в целях утверждения типа рег. №RA.RU.311670 от 01.07.2016 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

А.В. Кулешов

М.п. «___ » _____ 2020 г.