ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) АО «ВБД» (филиал «Рубцовский молочный завод») 2 очередь

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) АО «ВБД» (филиал «Рубцовский молочный завод») 2 очередь (далее – АИИС КУЭ) предназначена для измерений активной и реактивной электроэнергии, автоматизированного сбора, обработки, хранения, формирования отчетных документов и передачи полученной информации заинтересованным организациям в рамках согласованного регламента.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную двухуровневую автоматизированную систему с централизованным управлением и распределенной функцией измерений.

АИИС КУЭ включает в себя следующие уровни:

1-й уровень – измерительно-информационные комплексы (ИИК), включающие в себя измерительные трансформаторы тока (ТТ), измерительные трансформаторы напряжения (ТН) и счетчики активной и реактивной электрической энергии (счетчики), вторичные измерительные цепи и технические средства приема-передачи данных.

2-й уровень – информационно-вычислительный комплекс (ИВК), включающий в себя сервер с программным комплексом (ПК) «Энергосфера», устройство синхронизации времени (УСВ), каналообразующую аппаратуру, автоматизированное рабочее место (АРМ), АРМ энергосбытовой организации, технические средства для организации локальной вычислительной сети и разграничения прав доступа к информации.

Первичные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности, которые усредняются за период 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мошности.

Электрическая энергия, как интеграл по времени от средней за период 0,02 с мощности, вычисляется для интервалов времени 30 мин.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение мгновенных значений мощности на интервале времени усреднения 30 мин.

Цифровой сигнал с выходов счетчиков по проводным линиям связи поступает на GSM-модем, далее по каналам связи стандарта GSM поступает на сервер, где осуществляется обработка измерительной информации, в частности вычисление электрической энергии и мощности с учетом коэффициентов трансформации TT и TH, формирование и хранение поступающей информации, оформление отчетных документов.

От сервера информация в виде xml-файлов установленных форматов передается на APM энергосбытовой организации.

Также APM энергосбытовой организации может принимать измерительную информацию от серверов прочих АИИС КУЭ, зарегистрированных в Федеральном информационном фонде, в виде xml-файлов установленных форматов и передавать всем заинтересованным субъектам оптового рынка электроэнергии (OPЭ).

Передача информации от APM энергосбытовой организации в программно-аппаратный комплекс AO «ATC» с использованием электронной подписи субъекта OPЭ, в филиал AO «CO EЭС» и в другие смежные субъекты OPЭ осуществляется по каналу связи сети Internet в виде хml-файлов установленных форматов в соответствии с приложением 11.1.1 «Формат и регламент предоставления результатов измерений, состояний средств и объектов измерений в AO «ATC», AO «CO EЭС» и смежным субъектам» к Положению о порядке получения статуса субъекта оптового рынка и ведения реестра субъектов оптового рынка электрической энергии и мощности.

АИИС КУЭ имеет систему обеспечения единого времени (COEB), которая включает в себя часы счетчиков, часы сервера и УСВ.

Сравнение показаний часов сервера с УСВ осуществляется не реже одного раза в час. Корректировка часов сервера производится при расхождении с УСВ на величину более ± 1 с.

Сравнение показаний часов счетчиков с часами сервера осуществляется при каждом сеансе связи со счетчиками, но не реже одного раза в сутки. Корректировка часов счетчиков производится при расхождении показаний часов счетчиков и часов сервера на величину более ± 2 с.

Журналы событий счетчиков и сервера отображают факты коррекции времени с обязательной фиксацией времени до и после коррекции или величины коррекции времени, на которую было скорректировано устройство.

Программное обеспечение

В АИИС КУЭ используется ПК «Энергосфера». ПК «Энергосфера» обеспечивает защиту измерительной информации паролями в соответствии с правами доступа. Средством защиты данных при передаче является кодирование данных, обеспечиваемое программными средствами ПК «Энергосфера». Метрологически значимая часть ПК «Энергосфера» указана в таблице 1. Уровень защиты программного обеспечения от непреднамеренных и преднамеренных

изменений – «высокий» в соответствии с Р 50.2.077-2014.

Таблица 1 – Идентификационные данные ПО

- manned m	
Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	pso_metr.dll
Номер версии (идентификационный номер) ПО	не ниже 7.1
Цифровой идентификатор ПО	CBEB6F6CA69318BED976E08A2BB7814B
Алгоритм вычисления цифрового идентификатора ПО	MD5

Метрологические и технические характеристики

Таблица 2 — Состав измерительных каналов (ИК) АИИС КУЭ и их метрологические характеристики

		Измерительные компоненты				Метрологические харак- теристики ИК			
Но- мер ИК	Наименование точки измерений	TT	ТН	Счетчик	УСВ	Сервер	Вид элек- тро- энер- гии	Границы допускае- мой основ- ной отно- сительной погрешно- сти (±δ), %	Границы допускае-мой относительной погрешности в рабочих условиях (±δ), %
1	ПС 110 кВ Алттрак-2, ЗРУ-6 кВ, яч.117	ТПЛ-10У3 Кл.т. 0,5 400/5 Рег. № 1276-59	НОМ-6 Кл.т. 0,5 6000/√3/100/√3 Рег. № 159-49	ПСЧ- 4ТМ.05МК.00 Кл.т. 0,5S/1,0 Рег. № 50460-12		НР	Ак- тивная Реак-	1,3 2,5	3,3 5,6
2	ТОЛ-Н ГРП 6 кВ, ЗРУ-6 кВ, яч.13 ТОЛ-Н ЗОО Рег. № 5	Фазы: A; C ТОЛ-НТЗ-10 Кл.т. 0,5	Фазы: A; B; C ЗНОЛП-НТЗ-6 Кл.т. 0,5	ПСЧ- 4TM.05MK.00	Per. № 51644-12	ProLiant DL160 Gen9	тивная Ак- тивная	1,3	3,3
		300/5 Рег. № 51679-12 Фазы: A; С	6000/√3/100/√3 Рег. № 51676-12 Фазы: A; B; C	Кл.т. 0,5S/1,0 Рег. № 50460-12			Реак-	2,5	5,6

Примечания:

- 1. В качестве характеристик погрешности ИК установлены границы допускаемой относительной погрешности ИК при доверительной вероятности, равной 0,95.
- 2. Характеристики погрешности ИК указаны для измерений активной и реактивной электроэнергии на интервале времени 30 мин.
 - 3. Погрешность в рабочих условиях указана для тока 5 % от $I_{\text{ном}}$; $\cos \varphi = 0.8$ инд.
- 4. Допускается замена ТТ, ТН и счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в таблице 2, при условии, что предприятие-владелец АИИС КУЭ не претендует на улучшение указанных в таблице 2 метрологических характеристик. Допускается замена УСВ на аналогичное утвержденного типа, а также замена сервера без изменения используемого ПО (при условии сохранения цифрового идентификатора ПО). Замена оформляется актом в установленном собственником АИИС КУЭ порядке. Акт хранится совместно с настоящим описанием типа АИИС КУЭ как его неотъемлемая часть.

Таблица 3 – Основные технические характеристики ИК

Наименование характеристики	Значение
Количество ИК	2
Нормальные условия:	
параметры сети:	
напряжение, % от Ином	от 95 до 105
ток, % от Іном	от 5 до 120
коэффициент мощности соѕф	0,9
частота, Гц	от 49,8 до 50,2
температура окружающей среды, °С	от +15 до +25
Условия эксплуатации:	
параметры сети:	
напряжение, % от Uном	
ток, % от Іном	от 90 до 110
коэффициент мощности соѕф	от 5 до 120
частота, Гц	от 0,5 до 1,0
температура окружающей среды в месте расположения ТТ и ТН, °С	от 49,6 до 50,4
температура окружающей среды в месте расположения счетчиков,	от -45 до +40
°C	от +5 до +35
температура окружающей среды в месте расположения сервера, °С	от +15 до +25
Надежность применяемых в АИИС КУЭ компонентов:	
для счетчиков:	
среднее время наработки на отказ, ч, не менее	165000
среднее время восстановления работоспособности, ч	2
для УСВ:	
среднее время наработки на отказ, ч, не менее	45000
среднее время восстановления работоспособности, ч	2
для сервера:	
среднее время наработки на отказ, ч, не менее	35000
среднее время восстановления работоспособности, ч	1
Глубина хранения информации:	
для счетчиков:	
тридцатиминутный профиль нагрузки в двух направлениях, сут,	140
не менее	113
при отключении питания, лет, не менее	40
для сервера:	
хранение результатов измерений и информации состояний	2.5
средств измерений, лет, не менее	3,5

Надежность системных решений:

защита от кратковременных сбоев питания сервера с помощью источника бесперебойного питания;

резервирование каналов связи: информация о результатах измерений может передаваться в организации-участники оптового рынка электроэнергии по электронной почте.

В журналах событий фиксируются факты:

- журнал счетчика:
 параметрирования;
 пропадания напряжения;
 коррекции времени в счетчике.
- журнал сервера:параметрирования;пропадания напряжения;

коррекции времени в счетчике и сервере;

пропадание и восстановление связи со счетчиком.

Защищенность применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:

счетчика электрической энергии;

промежуточных клеммников вторичных цепей напряжения;

испытательной коробки;

сервера.

защита на программном уровне информации при хранении, передаче, параметрировании:

счетчика электрической энергии;

сервера.

Возможность коррекции времени в:

счетчиках электрической энергии (функция автоматизирована);

сервере (функция автоматизирована).

Возможность сбора информации:

о состоянии средств измерений;

о результатах измерений (функция автоматизирована).

Цикличность:

измерений 30 мин (функция автоматизирована);

сбора не реже одного раза в сутки (функция автоматизирована).

Знак утверждения типа

наносится на титульные листы эксплуатационной документации на АИИС КУЭ типографским способом.

Комплектность средства измерений

В комплект поставки входит техническая документация на АИИС КУЭ и на комплектующие средства измерений.

Комплектность АИИС КУЭ представлена в таблице 4.

Таблица 4 — Комплектность АИИС КУЭ

Наименование	Обозначение	Количество, шт./экз.
Трансформаторы тока	ТПЛ-10У3	2
Трансформаторы тока	ТОЛ-НТ3-10	2
Трансформаторы напряжения	HOM-6	3
Трансформаторы напряжения	ЗНОЛП-НТЗ-6	3
Счетчики электрической энергии	ПСЧ-4ТМ.05МК	2
многофункциональные	11C 4-41 WL03WIK	2
Устройства синхронизации времени	УСВ-3	1
Сервер	HP ProLiant DL160 Gen9	1
Методика поверки	МП ЭПР-259-2020	1
Формуляр	03.2020.ВБДРМЗ-АУ.ФО	1

Поверка

осуществляется по документу МП ЭПР-259-2020 «Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) АО «ВБД» (филиал «Рубцовский молочный завод») 2 очередь. Методика поверки», утвержденному ООО «ЭнергоПромРесурс» 18.06.2020 г.

Основные средства поверки:

- в соответствии с документами на поверку средств измерений, входящих в состав АИИС КУЭ:
- радиочасы МИР РЧ-02 (регистрационный номер в Федеральном информационном фонде 46656-11);
- анализатор количества и показателей качества электрической энергии AR.5L (регистрационный номер в Федеральном информационном фонде 44131-10);
- вольтамперфазометр ПАРМА ВАФ®-А (регистрационный номер в Федеральном информационном фонде 22029-10).

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке АИИС КУЭ.

Сведения о методиках (методах) измерений

приведены в документе «Методика измерений электрической энергии с использованием АИИС КУЭ АО «ВБД» (филиал «Рубцовский молочный завод») 2 очередь», аттестованном ООО «ЭнергоПромРесурс», аттестат аккредитации № RA.RU.312078 от 07.02.2017 г.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) АО «ВБД» (филиал «Рубцовский молочный завод») 2 очередь

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения

Изготовитель

Акционерное общество «Энергосбытовая компания РусГидро» (АО «ЭСК РусГидро»)

ИНН 7804403972

Адрес: 117393, г. Москва, ул. Архитектора Власова, д. 51

Телефон: (495) 983-33-28

Web-сайт: www.esc.rushydro.ru

E-mail: esc@rushydro.ru

Испытательный центр

Общество с ограниченной ответственностью «ЭнергоПромРесурс» (ООО «ЭнергоПромРесурс»)

Адрес: 143443, Московская обл., г. Красногорск, мкр. Опалиха, ул. Ново-Никольская, д. 57, офис 19

Телефон: (495) 380-37-61

E-mail: energopromresurs2016@gmail.com

Аттестат аккредитации ООО «ЭнергоПромРесурс» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.312047 от 26.01.2017 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

А.В. Кулешов

М.п. « ___ » _____ 2020 г.