ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Измерители электростатического потенциала Hakko FG-450

Назначение средства измерений

Измерители электростатического потенциала Hakko FG-450 (далее - измерители) предназначены для измерений потенциала электростатически заряженных объектов и потенциала электростатически заряженных объектов в режиме ионного баланса.

Описание средства измерений

Принцип действия измерителя основан на возбуждении в преобразователе под воздействием электростатического поля переменного напряжения, пропорционального измеряемому электростатическому потенциалу, и измерении этого напряжения. Переменный потенциал с модулятора через контакт, предусилитель и фильтр поступает на вход аналогоцифрового преобразователя и далее обрабатывается микропроцессором.

Измерители обеспечивают контроль расстояния до измеряемого объекта при помощи лазерной метки. Значение расстояния фиксировано и равно 30 мм. Измерители предназначены для автономной работы от неперезаряжаемого элемента питания типа «Крона» напряжением 9 В.

Измерители не предназначены для эксплуатации во взрывоопасных и пожароопасных зонах.

Измерители FG450 имеют различные исполнения, обозначаемые как FG450-N, где N-переменная при поставке в разные страны для удобства логистики.

При поставке в Российскую Федерацию модель обозначается как FG450-03.

Общий вид измерителя приведен на рисунке 1.

Рисунок 1 – Общий вид измерителя электростатического потенциала Hakko FG-450, место расположения гарантийной заводской пломбы.

Схема пломбировки от несанкционированного доступа, представлена на рисунке 2.

Рисунок 2 – Схема пломбировки от несанкционированного доступа, шильда с маркировкой при поставке в Российскую Федерацию

Программное обеспечение

Программное обеспечение является встроенным, предназначено для сбора, обработки, отображения, хранения информации об измеренной величине. К метрологически значимой части программного обеспечения измерителей относится все программное обеспечение измерителей. Идентификационные данные на программное обеспечение приведены в таблице 1.

Влияние программного обеспечения учтено при нормировании метрологических характеристик измерителей.

Конструкция исключает возможность несанкционированного влияния на ПО средства измерения и измерительную информацию.

Уровень защиты программного обеспечения - «высокий» в соответствии с Р 50.2.077-2014.

Таблица 1 – Идентификационные данные программного обеспечения

Идентификационные данные (признаки)	Значения
Идентификационное наименование ПО	Прошивка Hakko FG-450
Номер версии (идентификационный номер) ПО	-
Цифровой идентификатор ПО	-

Метрологические и технические характеристики

Таблица 2 – Метрологические характеристики

Наименование характеристики	Значение		
Диапазон измерений потенциала электростатически заряженных объектов, кВ	от 0,00 до ±19,99 (разрешение 0,01)		
Диапазон измерений потенциала электростатически заряженных объектов в режиме ионного баланса, кВ	от 0,000 до ±1,999 (разрешение 0,001)		
Пределы допускаемой абсолютной погрешности	$\pm (10 \% \text{ от показаний } + 2$		
измерений электростатического потенциала	единицы младшего разряда)		
Пределы допускаемой абсолютной погрешности измерений электростатического потенциала в режиме ионного баланса	$\pm (10 \% \text{ от показаний } + 2$ единицы младшего разряда)		

Таблица 3 – Основные технические характеристики

Наименование характеристики	Значение
Период обновления индикатора, с	0,5
Габаритные размеры, мм, не более	·
- ширина	68
- глубина	22
- высота	138
Масса, кг, не более	0,150 (без батареи)
Питание от неперезаряжаемого элемента питания	9
типа «Крона», В	
Условия эксплуатации:	
- температура окружающей воздуха, °C	от + 15 до + 25
- относительная влажность воздуха, %	от 20 до 70
- атмосферное давление, кПа	от 84 до 106
Наработка на отказ, ч	80000
Средний срок службы, лет	10

Знак утверждения типа

наносится на титульный лист руководства по эксплуатации типографским способом и на сам измеритель в виде наклейки.

Комплектность средства измерений

Таблица 4 – Комплектность измерителя

Наименование	Обозначения	Количество	
Заземляющий провод	B3584	1 шт.	
Ионно-балансная пластина с	B3585	1 шт.	
винтом			
Пластина с винтом* для измерения	B3586	1 шт.	
уровня заряда объектов			
Элемент питания	-	1 шт.	
Ремень	-	1 шт.	
Руководство по эксплуатации	-	1 экз.	
Методика поверки	МП 2201 – 0042 – 2020	1 экз.	
* Приобретается отдельно			

Поверка

осуществляется по документу МП 2201 — 0042 — 2020 «ГСИ. Измерители электростатического потенциала Накко FG-450. Методика поверки», утвержденному ФГУП «ВНИИМ им. Д.И. Менделеева» 18. 05. 2020 г.

Основные средства поверки:

- калибратор напряженности электростатического поля КНЭП-200 (рег. № 52594-13), применяемый в качестве исходного эталона согласно локальной поверочной схеме 13/2 — 52594 — 2020 — ВНИИМ, утверждённой ФГУП «ВНИИМ им. Д.И. Менделеева» 01. 06. 2020. Относительная погрешность воспроизведения напряженности электростатического поля в диапазоне минус 200...200 кВ/м не более ± 1,2 %, относительная погрешность воспроизведения электростатического потенциала заряженной поверхности в диапазоне от минус 30...30 кВ не более ± 0,4 %.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристики поверяемых СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к измерителям электростатического потенциала Hakko FG-450

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия

Локальная поверочная схема 13/2-52594-2020-BHИИМ для средств измерений напряженности электростатического поля в диапазоне $\pm~200~$ кB/м и электростатического потенциала заряженной поверхности в диапазоне $\pm~30~$ кB

Техническая документация фирмы-изготовителя

Изготовитель

Фирма HAKKO CORPORATION, Япония

Адрес: 4-5, SHIOKUSA 2-CHOME, NANIWA-KU, OSAKA, 556-0024, Japan.

Телефон:+81-6-6551-3225 Факс: +81-6-6551-8466 E-mail: <u>sales@hakko.com</u> Web-сайт: www.hakko.com

Заявитель

Акционерное общество «Научно-производственная фирма «Диполь»

(АО «НПФ «Диполь»)

ИНН 7804137537

Адрес: 197101, г. Санкт-Петербург, ул. Большая Монетная, дом 16, корпус 45, литер Я, помешение 52

Телефон/факс: (812) 702-12-66

E-mail: <u>info@dipaul.ru</u> Web-сайт: <u>www.dipaul.ru</u>

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологии имени Д.И. Менделеева»

Адрес: 190005, г. Санкт-Петербург, Московский проспект, 19

Телефон: +7 (812) 251-76-01 Факс: +7 (812) 713-01-14 E-mail: <u>info@vniim.ru</u> Web-сайт: www.vniim.ru

Регистрационный номер RA.RU.311541 в Реестре аккредитованных лиц в области обеспечения единства измерений Росаккредитации.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

А.В. Кулешов

М.п. « ___ » _____ 2020 г.