ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии ООО Шахта «Алардинская»

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии ООО Шахта «Алардинская» (далее по тексту - АИИС КУЭ) предназначена для измерений активной и реактивной электроэнергии, сбора, обработки, хранения, формирования отчетных документов и передачи полученной информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, трехуровневую автоматизированную систему с централизованным управлением и распределенной функцией измерения.

АИИС КУЭ включает в себя следующие уровни:

1-й уровень – измерительно-информационные комплексы (ИИК), которые включают в себя трансформаторы тока (ТТ), трансформаторы напряжения (ТН), счетчики активной и реактивной электроэнергии, вторичные измерительные цепи и технические средства приемапередачи данных;

2-й уровень – измерительно - вычислительный комплекс электроустановки (ИВКЭ), включающий в себя устройство сбора и передачи данных (УСПД) «ЭКОМ-3000» со встроенным устройством синхронизации системного времени (УССВ), каналообразующую аппаратуру для обеспечения информационного взаимодействия между уровнями системы;

3-й уровень – информационно-вычислительный комплекс (ИВК), включающий в себя сервер баз данных (СБД) DELL Power Edge, сервер обмена данными (СОД) со смежными субъектами, локально-вычислительную сеть, программное обеспечение (ПО) ПК «Энергосфера», автоматизированные рабочие места, технические средства приема-передачи данных, каналы связи для обеспечения информационного взаимодействия между уровнями системы, технические средства для обеспечения локальной вычислительной сети (ЛВС) и разграничения доступа к информации.

Первичные токи и напряжения преобразуются измерительными трансформаторами в аналоговые унифицированные сигналы, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности, которые усредняются за период 0,02 с. Измерительная информация на выходе счетчика без учета коэффициента трансформации:

- активная и реактивная электрическая энергия, как интеграл по времени от средней за период 0.02 с активной и реактивной мощности, соответственно, вычисляемая для интервалов времени 30 мин;
- средняя на интервале времени 30 мин активная (реактивная) электрическая мощность.

Результаты измерений для каждого интервала измерения и 30-минутные данные коммерческого учета соотнесены с текущим московским временем. Результаты измерений передаются в целых числах кВт·ч.

Цифровой сигнал с выходов счетчиков при помощи технических средств приемапередачи данных поступает на входы УСПД, где осуществляется вычисление электрической энергии и мощности с учетом коэффициентов трансформации ТТ и ТН, хранение измерительной информации и передача измерительной информации, а также отображение информации по подключенным к УСПД устройствам.

Далее измерительная информация поступает на ИВК, где выполняется дальнейшая обработка измерительной информации.

СБД АИИС КУЭ с периодичностью один раз в 30 минут опрашивает УСПД и считывает с них тридцатиминутный профиль мощности для каждого канала учета и журналы событий.

СБД осуществляет хранение и предоставление данных для оформления справочных

и отчетных документов. СОД считывает данные из СБД и осуществляет передачу данных в ПАК АО «АТС» за подписью ЭЦП субъекта ОРЭ, смежному субъекту и другим заинтересованным организациям в виде xml-файлов формата 80020.

АИИС КУЭ оснащена УССВ, на основе приемника сигналов точного времени, принимающего сигналы точного времени от спутников навигационной системы GPS, входящее в состав УСПД. Измерение времени АИИС КУЭ происходит автоматически на всех уровнях системы внутренними таймерами устройств, входящих в систему. Часы УСПД синхронизированы со временем УССВ, корректировка часов УСПД выполняется при расхождении времени часов УСПД и УССВ на ±1 с. Сличение времени часов УСПД с временем часов ИВК происходит при каждом опросе, при расхождении времени часов УСПД с временем часов ИВК на ±1 с выполняется их корректировка. Сличение времени часов счетчиков с временем часов УСПД происходит 1 раз в сутки, при расхождении времени часов счетчиков с временем часов УСПД на ±2 с выполняется их корректировка.

Журналы событий счетчика электрической энергии, УСПД, сервера отражают: время (дата, часы, минуты, секунды) до и после проведения процедуры коррекции часов устройств.

Программное обеспечение

В АИИС КУЭ используется программное обеспечение ПК «Энергосфера» (версия не ниже 6.4). Уровень защиты ПО от непреднамеренных и преднамеренных изменений соответствует уровню - «высокий» в соответствии Р 50.2.077-2014. Идентификационные признаки ПО приведены в таблице 1.

Таблица 1 – Идентификационные признаки ПО

Идентификационные признаки	Значение
Идентификационное наименование модуля ПО	pso_metr.dll
Номер версии (идентификационный номер) модуля ПО	1.1.1.1
Цифровой идентификатор модуля ПО	6C38CCDD09CA8F92D6F9 6AC33D157A0E
Алгоритм вычисления цифрового идентификатора модуля ПО	MD5

Метрологические и технические характеристики

Состав измерительных каналов приведен в таблице 2.

Таблица 2 - Состав измерительных каналов АИИС КУЭ

IK	Наименование измерительного канала	Состав измерительного канала			
Номер ИК		Трансформатор тока	Трансформатор напряжения	Счетчик электрической энергии	УСПД / УССВ/ Сервер
1	2	3	4	5	6
1	ПС 110 кВ Малиновская, ОРУ-110 кВ, отпайка от ВЛ- 110 кВ Южно- Кузбасская ГРЭС- Кедровая-1	ТРГ-110 II УХЛ1 150/5, КТ 0,2S Рег. № 26813-06	НАМИ-110 УХЛ1 110000:√3/100:√3 КТ 0,2 Рег. № 24218-08	CЭT-4TM.03 KT 0,2S/0,5 Per. № 27524-04	Power Edge
2	ПС 110 кВ Малиновская, ОРУ-110 кВ, отпайка от ВЛ- 110 кВ Южно- Кузбасская ГРЭС- Кедровая-2	ТРГ-110 II УХЛ1 150/5, КТ 0,2S Рег. № 26813-06	НАМИ-110 УХЛ1 110000:√3/100:√3 КТ 0,2 Рег. № 24218-08	СЭТ-4ТМ.03 КТ 0,2S/0,5 Рег. № 27524-04	GPS-приемником, рег.№ 17049-09/ DELL Power Edge
3	ПС 110 кВ Малиновская, РУ-6,3 кВ, яч. 1- 4, ф.6-1-4а	ТОЛ-10-I-2У2 300/5, КТ 0,5 Рег. № 15128-07	ЗНОЛП-6-У2 6000:√3/100:√3 КТ 0,5 Рег. № 23544-07	CЭT- 4TM.03M.01 KT 0,5S/1,0 Per. № 36697-08	емником, рс
4	ПС 110 кВ Малиновская, РУ-6,3 кВ, яч. 2- 4, ф.6-2-4а	ТОЛ-10-I-2У2 300/5, КТ 0,5 Рег. № 15128-07	3НОЛП-6-У2 6000:√3/100:√3 КТ 0,5 Рег. № 23544-07	CЭT- 4TM.03M.01 KT 0,5S/1,0 Per. № 36697-08	
5	ПС 110 кВ Малиновская, РУ-6,3 кВ, яч.2- 17, ф.6-2-17	ТОЛ-10-I-2У2 600/5, КТ 0,5 Рег. № 15128-07	3HOЛП-6-У2 6000:√3/100:√3 KT 0,5 Per. № 23544-07	CЭT-4TM.03.01 KT 0,5S/1,0 Per. № 27524-04	со встроенн
6	ПС 6,3 кВ № 16, РУ-6,3 кВ, ф.6- 2-17	ТОЛ-10-I-2У2 1000/5, КТ 0,5 Рег. № 15128-07	3HOЛП-6-У2 6000:√3/100:√3 KT 0,5 Per. № 23544-07	CЭT-4TM.03.01 KT 0,5S/1,0 Per. № 27524-04	«ЭКОМ-3000» со встроенным
7	ПС 110 кВ Малиновская, РУ-6,3 кВ, яч.1- 18, ф.6-1-18	ТОЛ-10-I-2У2 300/5, КТ 0,5 Рег. № 15128-07	3НОЛП-6-У2 6000:√3/100:√3 КТ 0,5 Рег. № 23544-07	CЭT-4TM.03M.01 KT 0,5S/1,0 Per. № 36697-08	(¹) (¹)

Продолжение таблицы 2

1	<u>2</u>	3	4	5	6
8	ПС 110 кВ Малиновская, РУ-6,3 кВ, яч.2- 18, ф.6-2-18	ТОЛ-10-I-2У2 300/5, КТ 0,5 Рег. № 15128-07	3НОЛП-6-У2 6000:√3/100:√3 КТ 0,5 Рег. № 23544-07	CЭT-4TM.03M.01 KT 0,5S/1,0 Per. № 36697-08	er Edge
9	ВЛ 0,4 кВ от ОРУ-1 6 кВ, концевая опора, отпайка в сторону РЩ-1 базовой станции ПАО МТС и РЩ-1 базовой станции ПАО Мегафон	Т-0,66 УЗ 50/5, КТ 0,5 Рег. № 52667-13	-	СЭТ-4ТМ.03М.08 КТ 0,2S/0,5 Рег. № 36697-08	GPS-приемником, рег.№ 17049-09/ DELL Power Edge
10	ПС 110 кВ Кедровая, РУ-6кВ, яч.21	ТЛМ-10 2УЗ 400/5, КТ 0,5 Рег. № 2473-05	НАМИТ-10-2 УХЛ2 6000/100 КТ 0,5 Рег. № 16687-07	СЭТ-4ТМ.03.01 КТ 0,5S/1,0 Рег. № 27524-04	іриемником, І
11	ПС 110 кВ Кедровая, РУ-6кВ, яч.22	ТЛМ-10 2УЗ 400/5, КТ 0,5 Рег. № 2473-05	НАМИТ-10-2 УХЛ2 6000/100 КТ 0,5 Рег. № 16687-07	CЭT-4TM.03.01 KT 0,5S/1,0 Per. № 27524-04	енным GPS-г
12	ПС 110 кВ Кедровая, РУ-6кВ, яч.5	ТЛМ-10 2УЗ 400/5, КТ 0,5 Рег. № 2473-05	НАМИТ-10-2 УХЛ2 6000/100 КТ 0,5 Рег. № 16687-07	СЭТ-4ТМ.03.01 КТ 0,5S/1,0 Рег. № 27524-04	«ЭКОМ-3000» со встроенным
13	ПС 110 кВ Кедровая, РУ-6кВ, яч.20	ТЛМ-10 2УЗ 400/5, КТ 0,5 Рег. № 2473-05	НАМИТ-10-2 УХЛ2 6000/100 КТ 0,5 Рег. № 16687-07	CЭT-4TM.03.01 KT 0,5S/1,0 Per. № 27524-04	«ЭКОМ-3

Примечания:

- 1 Допускается замена TT, TH и счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в таблице 2, при условии, что Предприятие-владелец АИИС КУЭ не претендует на улучшение указанных в таблице 2 метрологических характеристик.
- 2 Допускается замена УСПД, на аналогичные утвержденных типов.
- 3 Замена оформляется техническим актом в установленном на Предприятии-владельце АИИС КУЭ порядке, вносят изменения в эксплуатационные документы. Технический акт хранится совместно с эксплуатационными документами на АИИС КУЭ, как их неотъемлемая часть.

Таблица 3 – Основные метрологические характеристики ИК

Номер ИК	Вид электрической энергии	Границы основной погрешности ±δ, %	Границы погрешности в рабочих условиях ±δ, %
1, 2	Активная	0,5	1,0
	Реактивная	0,9	1,7
3-8, 10-13	Активная	1,3	3,2
	Реактивная	2,0	5,2
9	Активная	0,9	2,8
	Реактивная	1,5	4,4

Примечания:

- 1 Характеристики погрешности ИК даны для измерений электроэнергии (получасовая).
- 2~B качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности P=0.95
- 3 Границы погрешности результатов измерений приведены для $\cos \varphi = 0.8$, токе TT, равном 100 % от Іном для нормальных условий и при $\cos \varphi = 0.8$, токе TT, равном 5 % от Іном для рабочих условий, при температуре окружающего воздуха в месте расположения счетчиков от +5 до +35 °C.

Таблица 4 – Основные технические характеристики АИИС КУЭ

Наименование характеристики АИИС КУЭ Наименование характеристики	Значение
1	2
Количество измерительных каналов	13
Нормальные условия	
параметры сети:	
- напряжение, % от U _{ном}	от 98 до 102
- ток, % от I _{ном}	от 100 до 120
- коэффициент мощности	0,8
- температура окружающей среды для счетчиков, °С	от +21 до +25
- частота, Гц	50
Условия эксплуатации	
параметры сети:	
- напряжение, % от U _{ном}	от 90 до 110
- tok, % ot I_{hom}	от 1 до 120
- коэффициент мощности соsφ (sinφ)	от 0,5 инд. до 1 емк
- температура окружающей среды для ТТ и ТН, °С	от -40 до +40
- температура окружающей среды для счетчиков, °С	
CЭT-4TM.03M	от -40 до +60
CЭT-4TM.03	от -40 до +60
- температура окружающей среды для сервера, °С	от +10 до + 30
- температура окружающей среды для УСПД, °С	от +15 до + 25
- атмосферное давление, кПа	от 80,0 до 106,7
- относительная влажность, %, не более	98
- частота, Гц	от 49,6 до 50,4
Надежность применяемых в АИИС КУЭ компонентов	
Счетчики:	
- среднее время наработки на отказ, ч, не менее	
CЭT-4TM.03M	165000
CЭT-4TM.03	90000

Продолжение таблицы 4

1	2
УСПД:	
- среднее время наработки на отказ, ч, не менее	75000
Сервер БД:	
- среднее время наработки на отказ, ч, не менее	100000
- среднее время восстановления работоспособности, ч	1
Глубина хранения информации	
Счетчики:	
CЭT-4TM.03, CЭT-4TM.03M	
-каждого массива профиля при времени интегрирования 30	
минут, сут	114
УСПД:	
суточные данные о тридцатиминутных приращениях	
электропотребления (выработки) по каждому каналу, сут., не менее	
	45
Сервер БД:	
- хранение результатов измерений и информации состояний	
средств измерений, лет, не менее	3,5
Пределы допускаемой погрешности СОЕВ, с	±5

Надежность системных решений:

- защита от кратковременных сбоев питания сервера с помощью источника бесперебойного питания;
- резервирование каналов связи: информация о результатах измерений может передаваться в организации—участники ОРЭМ с помощью электронной почты и сотовой связи.

В журналах событий фиксируются факты:

- в журнале событий счетчика и УСПД:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике и УСПД.

Защищенность применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
 - электросчетчика и УСПД;
 - промежуточных клеммников вторичных цепей напряжения;
 - испытательной коробки;
 - сервера БД;
 - защита на программном уровне:
 - результатов измерений (при передаче, возможность использования цифровой подписи);
 - установка пароля на счетчик;
 - установка пароля на сервер БД.

Знак утверждения типа

наносится на титульные листы эксплуатационной документации на АИИС КУЭ.

Комплектность средства измерений

Комплектность АИИС КУЭ представлена в таблице 5.

Таблица 5 - Комплектность АИИС КУЭ

Наименование	Обозначение	Количество, шт.	
1	2	3	
Thoughon worton Torro	ТЛМ-10 2УЗ	8	
Трансформатор тока	ТОЛ-10-І-2У2	12	
Thoughon worton Torro	ТРГ-110 ІІ УХЛ1	6	
Трансформатор тока	Т-0,66 УЗ	3	
	ЗНОЛП-6-У2	9	
Трансформатор напряжения	НАМИ-110 УХЛ1	6	
	НАМИТ-10-2 УХЛ2	2	
	CЭT-4TM.03	2	
Cyanyyyy a yayanayyyaaya ya ayanyyy	СЭТ-4ТМ.03.01	6	
Счетчик электрической энергии	CЭT-4TM.03M.01	4	
	СЭТ-4ТМ.03М.08	1	
Устройство сбора и передачи данных (УСПД)	«ЭКОМ-3000»	1	
Основной сервер	DELL Power Edge	1	
Документация			
Методика поверки	МП 26.51.43/07/20	1	
Формуляр	ФО 26.51.43/07/20	1	

Поверка

осуществляется по документу МП 26.51.43/07/20 «Система автоматизированная информационно-измерительная коммерческого учета электроэнергии ООО Шахта «Алардинская». Методика поверки», утвержденному ФБУ «Самарский ЦСМ» $07.02.2020~\mathrm{r}$.

Основные средства поверки:

- средства поверки в соответствии с документами на средства измерений, входящими в состав АИИС КУЭ;
- устройство частотно-временной синхронизации по сигналам спутниковых навигационных систем ГЛОНАСС и GPS NAVSTAR CH-3833, регистрационный номер в Федеральном информационном фонде по обеспечению единства измерений 23276-02;
- мультиметр «Ресурс-ПЭ-5», регистрационный номер в Федеральном информационном фонде (рег. № 33750-12).

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик, поверяемых СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке.

Сведения о методиках (методах) измерений

приведены в документе «Методика (метод) измерений электрической энергии с использованием системы автоматизированной информационно-измерительной коммерческого учета электроэнергии ООО Шахта «Алардинская». МВИ 26.51.43/07/20, аттестованной ФБУ «Самарский ЦСМ». Аттестат аккредитации № RA.RU.311290 от 16.11.2015 г.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии ООО Шахта «Алардинская»

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения

Изготовитель

Общество с ограниченной ответственностью «ЭНЕРГОМЕТРОЛОГИЯ» (ООО «ЭНЕРГОМЕТРОЛОГИЯ»)

ИНН 7714348389

Адрес: 125040, г. Москва, ул. Ямского поля 3-я, д. 2, кор. 12, этаж 2, пом II, ком 9

Телефон: 8 (495) 230-02-86 E-mail: info@energometrologia.ru

Испытательный центр

Федеральное бюджетное учреждение «Государственный региональный центр стандартизации, метрологии и испытаний в Самарской области»

(ФБУ «Самарский ЦСМ»)

Адрес: 443013, г. Самара, пр. Карла Маркса, 134

Телефон: 8 (846) 336-08-27 Факс: 8 (846) 336-15-54

E-mail: referent@samaragost.ru

Аттестат аккредитации ФБУ «Самарский ЦСМ» по проведению испытаний средств измерений в целях утверждения типа № RA.RU 311281 от 16.11.2015 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

А.В. Кулешов

М.п. « ___ » _____2020 г.