Приложение № 27 к сведениям о типах средств измерений, прилагаемым к приказу Федерального агентства по техническому регулированию и метрологии от «7» октября 2020 г. № 1681

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Дифрактометры рентгеновские Equinox

Назначение средства измерений

Дифрактометры рентгеновские Equinox предназначены для измерений углов дифракции рентгеновского излучения, рассеянного на кристаллическом объекте и относительной интенсивности дифракционных пиков (максимумов отражения) при решении задач рентгенодифракционного и рентгеноструктурного анализа материалов.

Описание средства измерений

Принцип действия дифрактометров основан на регистрации дифрагированных рентгеновских лучей от атомных плоскостей кристаллической решетки исследуемого вещества. В дифрактометре используется асимметричная геометрия с фиксированным углом ω , причем разрешение по углу 2θ обеспечивается за счет использования изогнутого газонаполненного позиционно-чувствительного детектора.

Рентгеновское излучение от рентгеновской трубки попадает на плоский монохроматор (или параболическое зеркало). На выходе формируется пучок с малой угловой расходимостью $0.07 \div 0.30$ ° (в зависимости от типа используемого рентгенооптического элемента), ширина которого регулируется щелью. Пучок, попадая на поликристаллический образец под фиксированным углом ω дифрагирует на беспорядочно расположенных кристаллитах, и рассеянное излучение попадает в позиционно-чувствительный детектор

Квант рентгеновского излучения при попадании внутрь камеры детектора обеспечивает возникновения разряда в инертном газе (Ar) под высоким давлением (0,587÷0,608 МПа (5,8 ÷ 6,0 атм)). Разряд происходит между изогнутым катодом, находящимся под напряжением 9,7 кВ и анодом, представляющим из себя линию задержки (систему с высокой индуктивностью). Разряд гаснет в течение некоторого времени (для его уменьшения, а также для оптимизации геометрических характеристик плазменного канала используют не чистый аргон, а его смесь с 15 % этана), при этом в цепи анода регистрируют импульсы тока, время прихода которых на левую и правую стороны линии задержки различно. Цифровой сигнальный процессор определяет разность во времени и приписывают импульс к одному из 4096 каналов (диапазонов времени задержки). Таким образом регистрируется зависимость $I/(N_{\text{канала}})$ в режиме реального времени. Управляющий компьютер дифрактометра осуществляет пересчет номера канала в угол 2 θ , обеспечивая вывод дифрактограммы.

Дифрактометры представляют собой стационарные настольные лабораторные приборы и изготавливаются в виде двух моделей: Equinox 100 и Equinox 1000. Конструктивно дифрактометры Equinox 100 и Equinox 1000 выполнены в виде приборного каркаса, в задней верхней части которых располагаются высоковольтный источник питания рентгеновской трубки, блок контроля систем безопасности и блок управления и сбора данных. В передней части каракаса в специальной защите от прямого и отраженного рентгеновского излучения трубки располагается измерительный блок, вертикально расположенный позиционно-чувствительный детектор, рентгеновскую трубку, монохроматор (или зеркало) с системой регулировки, щели и держатель образца с регулируемым углом ω .

Обе модели дифрактометров эквивалентны друг другу с точки зрения конструкции измерительного блока, отличия заключаются только в используемом источнике рентгеновского излуче-

ния (у Equinox 100 вместо трубки с нормальным фокусом используется микрофокусный источник). Управление дифрактометрами, сбор данных и их обработка осуществляются с помощью внешнего персонального компьютера. Пломбирование дифрактометров не предусмотрено.

Общий вид и дифрактометров место нанесения знака поверки представлены на рисунках 1 и 2.

Рисунок 1 – Общий вид дифрактометра Equinox 100

Рисунок 2 – Общий вид дифрактометра Equinox 1000

Программное обеспечение

Дифрактометры оснащены встроенным программным обеспечением (прошивкой) и автономным программным обеспечением Symphonix. К метрологической значимой части встроенного ПО относится ПО контроллера позиционно-чувствительного детектора (модуль CPS). К метрологически значимой части автономного ПО относятся два модуля: AcqCps и IMAD.

Идентификационные данные ПО приведены в таблице 1.

Встроенное ПО предназначено для сбора данных с детектора, их передачи в автономное ПО и для реализации аппаратных функций детектора.

Метрологически значимые модули автономного ПО выполняют следующие функции:

- регистрация, обработка и хранение данных, получаемых с детектора;
- настройка режимов работы;
- позиционная калибровка детектора;
- диагностические проверки;

Уровень защиты ΠO от непреднамеренных и преднамеренных изменений соответствует уровню «средний» по $\ P$ 50.2.077-2014. Влияние ΠO на метрологические характеристики учтено при их нормировании.

Таблица 1 – Идентификационные данные программного обеспечения

Идентификационные данные (признаки)	Значение		
	Встроенное программное	Автономное программное	
	обеспечение	обеспечение	
Идентификационное наименование	CPS	AcqCps	IMAD
программного обеспечения	CIB	печерь	IIVII ID
Номер версии (идентификационный	Не ниже CPS 120	не ниже	не ниже
номер) программного обеспечения	ПС ниже СГЗ 120	1.0.0.0	4.0
Цифровой идентификатор	_		
программного обеспечения		_	_

Метрологические и технические характеристики

Таблица 2 – Метрологические характеристики

	Значение		
Наименование характеристики	Equinox 100	Equinox 1000	
Transcriebanne rapaktepnetmar		Исп.1	Исп.2
Диапазон измерений углов дифракции 2 θ , градус	от 0 до 110	от 0 до 110	от 0 до 110 от 33 до 140
Пределы допускаемой абсолютной погрешности при измерении угловых положений дифракционных максимумов, градус	±0,15	±0,15	
Относительное СКО выходного сигнала ¹⁾ , %, не более	5,0	5,0	

¹⁾Выходной сигнал: суммарная интенсивность в максимуме отражения (104) для ГСО 10440-2014; число измерений=10. Время накопления 600 с.

Таблица 3 – Основные технические характеристики

11	Значение		
Наименование характеристики	Equinox 100	Equinox 1000	
Радиус кривизны гониометра, мм	180	180	
Напряжение питания от сети переменно-	230+23-23	230+23-23	
го тока частотой (50±1)Гц, В	250 -23	230 -23	
Потребляемая мощность	1,0	8,0	
(без охладителя), кВ·А, не более	1,0	0,0	
Габаритные размеры (Д×Ш×В), мм,	560x750x550	798x1012x764	
не более	2001172011220	770110121701	
Масса, кг, не более	80	191	
Средний срок службы, лет	10	10	
Наработка на отказ, ч, не менее	10000	10000	
Условия эксплуатации:			
- температура окружающей среды °C	от 18 до 30	от 18 до 30	
-относительная влажность, %, не более	80	80	

Знак утверждения типа

наносится на титульный лист руководства по эксплуатации методом компьютерной графики и на правый верхний угол лицевой панели в виде наклейки или отпечатком от резинового клише.

Комплектность средства измерений

Таблица 4 – Комплектность средства измерений

Наименование	Обозначение	Количество
Дифрактометр	Equinox 100 или Equinox 1000	1 шт.
Компьютер	_	1 шт.
Руководство по эксплуатации	_	1 экз.
Методика поверки	МП 242- 2369-2020	1 экз.

Поверка

осуществляется по документу МП-242-2369-2020 «ГСИ. Дифрактометры рентгеновские Equinox. Методика поверки», утвержденному ФГУП «ВНИИМ им. Д.И. Менделеева» $16.06.2020~\Gamma$.

Основные средства поверки:

стандартный образец дифракционных свойств кристаллической решетки Γ CO 10440-2014 (SRM 1976b).

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых средств измерений с требуемой точностью.

Знак поверки наносится на лицевую панель дифрактометра, как показано на рисунках 1, 2 и (или) на свидетельство о поверке.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе; при использовании в сфере государственного регулирования обеспечения единства измерений дифрактометр применяется в соответствии с аттестованными методиками (методами) измерений

Нормативные и технические документы, устанавливающие требования к дифрактометрам рентгеновским Equinox

Техническая документация изготовителя

Изготовитель

Фирма Thermo Fisher Scientific (Ecublens) SARL, Швейцария Адрес: En Vallaire Ouest C, Case Postale 1024, Ecublens, Switzerland

Телефон: + 41 21 694 71 11, факс: + 41 21 694 71 12.

Web-сайт: www.thermoscientific.com

Производственная площадка (1):

Thermo Fisher Scientific INEL SAS, Франция

Адрес: 45410 Artenay, France Телефон/факс: +33 (0)2 3880 4545

E-mail: info@inel.fr Web-сайт: www.inel.fr

Производственная площадка (2):

Thermo Fisher Scientific Brno s.r.o., Чешская Республика Адрес: Vlastimila Pecha 12, Brno, 627 00, Czech Republic

Телефон: +420513245111

E-mail: infobrno@thermofisher.com Web-сайт: www.thermofisher.jobs.cz

Заявитель

Общество с ограниченной ответственностью «ТТ Аналитика»

(ООО «ТТ Аналитика»)

ИНН 7709858627

Адрес: 119017, г. Москва, Кадашёвская наб., д.6/1/2 стр.1, каб.225

Юридический адрес: 129626, г. Москва, улица Новоалексеевская, дом 20А, строение 1, этаж 1, комн. 34

Телефон: (495) 565-35-72, факс: (495) 621-59-02

E-mail: info@thermotechno.ru

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологии им. Д.И. Менделеева»

Адрес: 190005, г. Санкт-Петербург, Московский пр., д. 19

Телефон: (812) 251-76-01, факс: (812) 713-01-14

Web-сайт: www.vniim.ru E-mail: info@vniim.ru

Регистрационный номер RA.RU.311541 в Реестре аккредитованных лиц в области обеспечения единства измерений Росаккредитации.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии М.п. « ___ » ____ 2020 г.