Приложение № 42 к перечню типов средств измерений, прилагаемому к приказу Федерального агентства по техническому регулированию и метрологии от «3» ноября 2020 г. № 1793

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Спектрометры портативные рентгенофлуоресцентные X-SPEC

Назначение средства измерений

Спектрометры портативные рентгенофлуоресцентные X-SPEC (далее по тексту - спектрометры) предназначены для измерений массовой доли элементов в пробах твердых и жидких веществ, порошков, пленок и других материалов.

Описание средства измерений

Принцип действия спектрометров основан на энергодисперсионном рентгенофлуоресцентном методе. Возбужденное в образце вторичное излучение регистрируется энергодисперсионным каналом, который включает в себя приемник излучения и многоканальный амплитудный спектрометр.

Спектрометр состоит из источника рентгеновского излучения, устройства для установки исследуемых образцов, приемника вторичного излучения и электронных блоков (блок питания рентгеновской трубки с блоком трубки и блок электроники спектрометра).

В качестве источника рентгеновского излучения в спектрометре используется рентгеновская трубка. В качестве приемника используется кремниевый дрейфовый детектор (SDD-детектор), охлаждаемый термоэлектрическим холодильником. В качестве входного окна детектора используется тонкая бериллиевая фольга.

Спектрометры могут использоваться во внелабораторных, лабораторных и промышленных условиях. Спектрометр выполняет бесконтактное определение элементного состава различных объектов и подготовленных проб, диапазон регистрируемых энергий $(1,0 \div 40)$ кэВ.

Спектрометры могут быть выполнены в двух исполнениях: исполнение с системой гелиевой продувки камеры для образцов, либо исполнение без системы гелиевой продувки.

Спектрометр имеет пластиковый корпус с рукояткой или металлический корпус и специальное крепление для промышленного использования, к нему может также подсоединяться рукоятка.

Для обеспечения работы спектрометра в автономном режиме в рукоятку вставляются сменные батареи аккумуляторов. В лабораторных и промышленных условиях питание прибора можно осуществлять также от бортовой сети автомобиля, источника постоянного тока или через адаптер от сети переменного тока 220 В.

В спектрометр устанавливаются сменные фильтры первичного излучения, сменный коллиматор первичного излучения.

В спектрометре опционально устанавливается видеокамера, позволяющая контролировать исследуемую область изучаемого объекта.

Конструктивно спектрометры выполнены в виде переносного прибора и управляются либо от карманного персонального компьютера (через интерфейс Bluetooth или WiFi), либо от компьютера с интерфейсами Bluetooth, USB и RS232 или WiFi, работающим под управлением операционной системы Windows.

Пломбирование спектрометров не предусмотрено. Общий вид спектрометров и место нанесения знака поверки приведены на рисунках 1 и 2.

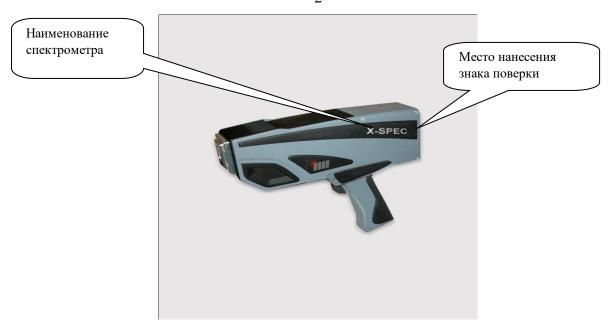


Рисунок 1 - Общий вид спектрометра портативного рентгенофлуоресцентного X-SPEC в пластиковом корпусе

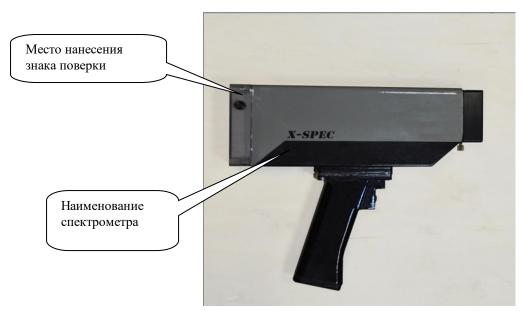


Рисунок 2 - Общий вид спектрометра портативного рентгенофлуоресцентного X-SPEC в металлическом корпусе

Программное обеспечение

Спектрометры оснащены встроенным и автономными ПО «XSpec» (для ОС Android) и «XRPortableMesaure» (для ОС Windows).

Идентификационные данные ПО приведены в таблице 1.

Все встроенное и автономное ПО является метрологически значимым.

Автономное ПО «XSpec», «XRPortableMesaure» выполняют следующие функции:

- управление спектрометром;
- настройку режимов работы;
- получение спектров;
- обработку и хранение результатов измерений;
- построение градуировочных графиков;
- проведение диагностических проверок спектрометра.

Встроенное ПО осуществляет управление прибором, снятие результатов измерений и передачу этих результатов и изображения с видеокамеры по сети в автономное ПО.

Уровень защиты автономного ΠO «XSpec», «XRPortableMesaure» от непреднамеренных и преднамеренных изменений соответствует уровню «низкий», уровень защиты встроенного ΠO – «средний» по P 50.2.077-2014.

Влияние ПО на метрологические характеристики учтено при их нормировании.

Таблица 1 - Идентификационные данные программного обеспечения

Tuestingu T Tigetin gintagnemiste gamiste nper parismere e e e en tenisir						
Идентификационные данные (признаки)	Значение					
Идентификационное наименование ПО	Встроенное ПО спектрометров портативных рентгенофлуоресцентных X-SPEC	XSpec	XRPortableMesaure			
Номер версии (идентификационный номер) ПО	не ниже 1.1	не ниже 1.0	не ниже 0.21			
Цифровой идентифи- катор ПО	-	-	-			

Метрологические и технические характеристики

Таблица 2 – Метрологические характеристики

Наименование характеристики	Значение
Диапазон определяемых элементов	
- исполнение с системой гелиевой продувки камеры для образцов	от Na до U
- исполнение без системы гелиевой продувки	от Al до U
Энергетическое разрешение детектора по линии Fe Ka, эB, не более	155
тносительное СКО выходного сигнала, %, не более	1
Сонтрастность на линии Ni Kα 1), в воздушной среде, не менее	1
сонтрастность на линии Cr Kα 2), в воздушной среде, не менее	1,5
Сонтрастность на линии Si K α^{3} , в среде гелия, не менее $^{4)}$	0,1

¹⁾ при использовании стандартных образцов сталей легированных с аттестованными значениями массовых долей Ni в диапазоне от 15 % до 35 %

²⁾ при использовании стандартных образцов сталей легированных с аттестованными значениями массовых долей Cr в диапазоне от 15 % до 35 %

³⁾ при использовании стандартных образцов сталей легированных с аттестованными значениями массовых долей Si в диапазоне от 0,5 % до 2 %

⁴⁾ если данный режим используется

Таблица 3 - Основные технические характеристики

тиолици з отновные темин теекне марактериетики		
Наименование характеристики	Значение	
1	2	
Тип рентгеновской трубки (РТ)	С прострельным анодом	
Мощность рентгеновской трубки (максимальная), Вт:	4-12	
Тип детектора	Si-дрейфовый с Пельтье охлаждени- ем	
Количество каналов	4096	
Материал окна детектора	Be	
Габаритные размеры (Д×Ш×В), мм, не более	300×75×350	
Масса, кг, не более	2	
Потребляемая мощность, В А, не более	15	
Средний срок службы, лет	5	
Наработка на отказ, ч	4000	
Электрическое питание осуществляется от: литий – ионной аккумуляторной батареи:		
- напряжение, В	3	
- емкость, мАч, не менее	3000	
от электрической сети переменного тока (50±1) Гц, В	220±22	
от бортовой сети автомобиля или источника постоянного тока 2 A, B (полевых условиях)	от 10,5 до 14	
Условия эксплуатации - диапазон температур окружающего воздуха, °С - относительная влажность окружающего возду-	от -20 до +40	
ха (при 25 °C), %	от 20 до 95	
- диапазон атмосферного давления, кПа	от 84 до 107	

Знак утверждения типа

наносится на титульный лист руководства по эксплуатации методом компьютерной графики и на заднюю панель корпуса спектрометра в виде наклейки или методом шелкографии.

Комплектность средства измерений

Таблица 4 – Комплектность средства измерений

таолица т – Комплектность средства измерении				
Наименование	Обозначение	Кол-во		
1	2	3		
Спектрометр X-SPEC в составе:	СИЕШ.412131.003	1		
Съемная рукоятка*	СИЕШ. 01.20.000	1		
Аккумуляторный источник автономного питания*		2		
Зарядное устройство для источников авто- номного питания*		1		
Штатив для стационарной установки*	СИЕШ.01.30.000 ВО	1		
Ноутбук*		1		
Адаптер для питания спектрометра от сети переменного тока 220 В/50 Гц	Mean well AS-120 P	1		
Портативный принтер*		1		
Транспортная укладка*	Peli 1520	1		

1	2	3
Комплект ЗИП	СИЕШ.412131.003 ЗИП	1
Руководство по эксплуатации	СИЕШ.412131.003 РЭ	1
Газовая гелиевая станция*	СИЕШ.01.40.000	1
Кобура*	СИЕШ.01.00.003	1
Пакет программного обеспечения	Диск с программами	1
Методика поверки	МП 242-2388-2020	1
Формуляр	СИЕШ.412131.003 ФО	1
Упаковка	в соответствии с СИ-	1
	ЕШ.412131.000	

^{*}поставляется опционально. Комплект поставки спектрометра и комплектность ПК определяются контрактом (договором) на поставку.

Поверка

осуществляется по документу МП 242-2388-2020 «ГСИ. Спектрометры портативные рентгенофлуоресцентные X-SPEC. Методика поверки», утвержденному ФГУП «ВНИИМ им. Д.И.Менделеева» 25.06.2020 года.

Основные средства поверки:

Стандартные образцы сталей легированных с диапазоном аттестованных значений массовых долей элементов: Ni от 15 % до 35 %, Cr от 15 % до 35 %, Si от 0,5 % до 2 % (например, Γ CO 8876-2007 Π Γ -64).

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик, поверяемых спектрометров с требуемой точностью.

Знак поверки наносится на заднюю панель спектрометра, как показано на рисунке 1 и (или) на свидетельство о поверке.

Сведения о методиках (методах) измерений

отсутствуют, измерения в сфере государственного регулирования обеспечения единства измерений выполняют по аттестованным методикам измерений.

Нормативные и технические документы, устанавливающие требования к спектрометрам портативным рентгенофлуоресцентным X-SPEC

Технические условия СИЕШ.412131.003 ТУ

Изготовитель

Акционерное Общество «Научные приборы» (АО «Научные приборы»)

ИНН 7826012838

Адрес: 198095, г. Санкт-Петербург, ул. Маршала Говорова, дом 52 Юридический адрес: 190103, г. Санкт- Петербург, Рижский пр., дом 26

Телефон: (812) 313-1-555. Факс: (812) 251-73-63 Web-сайт: sinstr.ru E-mail: sales@sinstr.ru

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологии им. Д.И. Менделеева»

(ФГУП «ВНИИМ им. Д.И. Менделеева»)

Адрес: 190005, г. Санкт-Петербург, Московский пр.19

Телефон: (812) 251-76-01 Факс: (812) 713-01-14 E-mail: info@vniim.ru, Web-сайт: www.vniim.ru

Регистрационный номер RA.RU.311541 в Реестре аккредитованных лиц в области обеспечения единства измерений Росаккредитации.