Приложение № 27 к перечню типов средств измерений, прилагаемому к приказу Федерального агентства по техническому регулированию и метрологии от «2» ноября 2020 г. № 1789

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Преобразователи измерительные многофункциональные «ПАРМА Т400»

Назначение средства измерений

Преобразователи измерительные многофункциональные «ПАРМА Т400» (модификации класс A и класс S) (далее по тексту — Т400) предназначены для измерений параметров электрической энергии в системах энергоснабжения общего назначения переменного трехфазного (трех и четырех проводных сетей) и однофазного тока с номинальной частотой 50 Гц с последующей передачей их через последовательный интерфейс RS-485 на контроллер верхнего уровня систем АИИС по одному из протоколов MODBUS RTU, MODBUS ASCII или МЭК 60870-5-101.

Преобразователи измерительные многофункциональные «ПАРМА Т400» могут применяться в электрических сетях напряжением ≤0,4 кВ непосредственно, или относительно вторичного трансформатора, в сетях среднего и высокого напряжения в качестве элемента нижнего уровня в системах АИИС на объектах производства, преобразования, передачи и распределения электроэнергии в электроэнергетике и различных отраслях промышленности.

Описание средства измерений

Принцип действия T400 основан на одновременном измерении параметров электрической энергии, преобразовании измерительной информации в цифровой код с последующей передачей на микроконтроллер через последовательный интерфейс RS-485 по одному из протоколов MODBUS RTU, MODBUS ASCII или MЭК 60870-5-101

Скорость обмена данными по основному интерфейсу RS-485: от 9600 до 230400 бод (программируется).

Передача измеренных данных осуществляется по запросу внешней стороны.

Измеряемые сигналы токов и напряжений через клеммник поступают на схему согласования уровней.

Измеряемые сигналы токов подключаются к схеме согласования через измерительные трансформаторы тока, расположенные на печатной плате преобразователя. С выхода схемы согласования, измеряемые сигналы поступают на АЦП, где преобразуются в цифровой код и поступают в микроконтроллер (СРU), который производит их обработку и вычисление результирующих параметров. Сформированный набор параметров передается через интерфейс RS-485 по внешнему запросу по одному их указанных протоколов.

Интерфейсные разъемы при помощи оптической развязки, гальванически развязаны от основной измерительной схемы.

Схема питания Т400 выполнена с применением трансформатора и обеспечивает полную гальваническую развязку прибора от сети питания.

T400 является полностью автоматизированным, стационарным измерительным преобразователем, который устанавливается на объекте эксплуатации посредством крепления как на 35-мм DIN-рейку, так и на панель.

Проведение конфигурирования, диагностики и поверки T400, осуществляется при помощи ПК через интерфейс USB.

Корпус преобразователя изготовлен из ударопрочного пластика ABS.

Крышка преобразователя имеет клеммный блок, к которому подключаются измеряемые

цепи, цепи питания и проводной рабочий интерфейс RS-485.

На передней панели T400 расположен светодиодный индикатор «Работа» и разъем интерфейса USB.

T400 выпускаются двух классов, класс A — повышенной точности и класс S — менее точные.

Общий вид Т400 представлен на рисунке 1.

Рисунок 1 — Внешний вид Преобразователя измерительного многофункционального «ПАРМА $$\operatorname{T}400\xspace$ »

Рисунок 2 — Тыльная панель преобразователя измерительного многофункционального «ПАРМА T400»

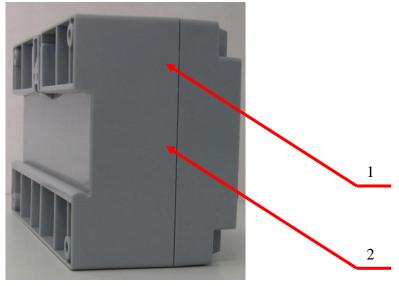


Рисунок 3 – Схема пломбирования от несанкционированного доступа 1 – Место для пломбирования и 2 – место нанесения знака поверки в виде наклейки

Программное обеспечение

Программное обеспечение (далее - Π O) T400 предназначено для обработки, представления данных, выполнения основных технологических и сервисных функций, а также для выполнения самодиагностики регистраторов.

Встроенное ПО T400 устанавливается на заводе-изготовителе с использованием специальных программно-технических средств.

Для защиты от преднамеренных и непреднамеренных изменений блоков данных, включающих в себя параметры конфигурации и архивы, предусмотрено разграничение доступа к функциям операционной системы и к данным встроенного ПО.

Идентификационные данные ПО Т400 приведены в таблице 1.

Таблица 1 - Идентификационные данные ПО

Наименование ПО	Идентификационное наименование ПО	Номер версии (Идентифи- кационный номер)	Цифровой идентификатор ПО (контрольная сумма исполняемого кода)
Программа конфигурации и отображения результатов измерений Т400	T400Link	1.4.0.7	-

Уровень защиты программного обеспечения от непреднамеренных и преднамеренных изменений – «Высокий» в соответствии с Р 50.2.077-2014.

Метрологические и технические характеристики

Нормируемые метрологические характеристики T400 приведены в таблице 2, соответствие погрешностей измерения классам A и S обозначены буквами A и S соответственно Таблица 2 - Нормируемые метрологические характеристики T400

Габлица 2 - Нормируемые метрологические характеристики 1400				
Характеристика	Диапазон	Пределы допускаемой основной		Дополнитель-
выходного сигнала		погрешности Δ - абсолютной,		ные условия
		δ- относителы	ной, %, ү- приведенной, %	,
Действующее значение	от 1 до 300	от 1 до 100	$A=\pm(0.0005\cdot X+0.05) (\Delta)$	U _{ном} =57,74 В
напряжения переменного		01 1 до 100	$S = \pm 0,1 (\Delta)$	
тока (фазного) $\mathbf{U}_{oldsymbol{\phi}}$,В		от 100 то 200	$A=\pm 0,1(\delta)$.	U _{ном} =220 В
		от 100 до 300	$S=\pm 0,15^{(1)}(\gamma)$	
Действующее значение	от 1,7 до	1.7 100	$A=\pm(0,001\cdot X+0,05) (\Delta)$	U _{ном} =100 В
междуфазного напряжения	520	от 1,7 до 100	S=±0,15 (Δ)	
U _{мф} , В		от 100 до 520	$A=\pm 0,1$ (δ);	U _{ном} =380 В
		01 100 до 320	$S=\pm 0,15^{-1}(\gamma)$	
Поўстру почуса вучачачу	от 1 до 300	от 0 до 100	$A=\pm(0,0005\cdot X+0,05) (\Delta)$	U _{ном} =57,74 В
Действующее значение напряжения нулевой		01 0 до 100	S=±0,1 (Δ)	
последовательности U ₀ ,В		от 100.01 до 300	A=±0,1 (δ)	U _{ном} =220 В
- 0 ,		01 100.01 до 300	$S=\pm 0,15^{-1}(\gamma)$	
Частота переменного тока f , Γ ц	от 40 до 60		$\Delta=\pm0,01~(\Delta)$	ƒ _{ном} =50 Гц U≥10 В
		0.02	$A = \pm (0.00125 \cdot X + 0.00075) (\Delta)$	
Действующее значение силы переменного тока (фазного) I_{φ} , A	0.02	от 0,02 до 3	S=±0,005 (Δ)	
	от 0,02 до 6		A= $\pm (0.00125 \cdot X + 0.00075) (\Delta)$	$I_{\text{HOM}}=5 \text{ A}$
(Ψασποιο) 1φ, 11		от 3 до 6	$S = \pm 0.15^{2} (\gamma)$	
Действующее значение	0 02 6	0 02 2	$A=\pm(0,00125\cdot X+0,00125) (\Delta)$	
тока нулевой	от 0,02 до 6 от 0,02 до 3	от 0,02 до 3	S=±0,005 (Δ)	

Характеристика выходного сигнала	Диапазон	Пределы допускаемой основной погрешности Δ - абсолютной, δ - относительной, $\%$, γ - приведенной, $\%$		Дополнитель- ные условия	
последовательности $\mathbf{I_0}$, A		от 3 до 6	$A=\pm(0.00125\cdot X+0.00125) (\Delta)$		
A		S=±0,15 ² (γ)			
	Активная мощность				
		от 0 до 500	$A=\pm(0.25+0.0075\cdot(P_{K}/P_{H}-1),(\delta)$	cosφ ≥0,5	
Ho arrest dans D. Dr.	от 0 то 1900		S=±1,25 (Δ)	cosφ ≥0,2	
По одной фазе Р, Вт	от 0 до 1800	от 500,1 до 1800	$A=\pm(0,25+0,0075\cdot(P_{K}/P_{H}-1),(\delta))$	$ \cos\varphi \ge 0.5$	
			$S=\pm 0.25^{3}(\gamma)$	$ \cos\varphi \ge 0.2$	
		от 0 до 1500	$A=\pm(0.25+0.0075\cdot(P_{\kappa}/P_{\nu}-1),(\delta)$	cosφ ≥0,5	
По трем фазам Р, Вт	от 0 до 5400		$S=\pm 1,25 (\Delta)$	$ \cos\varphi \ge 0.2$	
по трем фазам г, вт	01 0 до 3400	от 1500,1 до 5400	$A=\pm(0,25+0,0075\cdot(P_{K}/P_{H}-1),(\delta)$	$ \cos\varphi \ge 0.5$	
			$S=\pm 0.25^{3}(\gamma)$	$ \cos\varphi \ge 0.2$	
		Реактивная мощн			
	от 0 до 1800	от 0 до 500	$A=\pm(0,25+0,0075\cdot Q_{K}/Q_{H}-1), (\delta)$	$ \sin\varphi \ge 0.5$	
По одной фазе Q, вар			S=±1,25 (Δ)	$ \sin\varphi \ge 0.2$	
по одной фазе Q, вар		от 500,1 до 1800	$A=\pm(0,25+0,0075\cdot Q_{K}/Q_{H}-1), (\delta)$	$ \sin\varphi \ge 0.5$	
			$S=\pm 0.25^{3}(\gamma)$	$ \sin\varphi \ge 0.2$	
	от 0 до 5400	от 0 до 1500	A=± $(0,25+0,0075\cdot Q_{\kappa}/Q_{\mu}-1),(δ)$	$ \sin\varphi \ge 0.5$	
По трем фазам Q, вар			$S=\pm 1,25 (\Delta)$	$ \sin\varphi \ge 0.2$	
по трем фазам Q, вар		от 1500,1 до 5400	A=± $(0,25+0,0075\cdot Q_{\kappa}/Q_{\mu}-1)$,(δ)	$ \sin\varphi \ge 0.5$	
			$S=\gamma=\pm0,25^{3}(\gamma)$	$ \sin\varphi \ge 0.2$	
		Полная мощнос	сть		
	от 0 до 1800	от 0 до 500	$A=\pm(0.25+0.0075\cdot(S_{K}/S_{H}-1))$ (δ)		
По одной фазе S, B·A			S=±1,25 (Δ)		
		от 500,1 до 1800	$A=\pm(0.25+0.0075\cdot(S_{R}/S_{H}-1))$ (δ)		
			$S=\gamma=\pm0,25 \%^{3)} (\gamma)$		
	от 0 до 5400	от 0 до 1500	$A=\pm(0.25+0.0075\cdot(S_{\kappa}/S_{\mu}-1))$ (δ)		
По трем фазам S, B·A			S=±1,25 (Δ)		
		от 1500,1 до 5400	$A=\pm(0.25+0.0075\cdot(S_{K}/S_{H}-1))$ (δ)		
			$S=\pm 0.25 \%^{3} (\gamma)$		

Примечание: Х – измеренное значение фазного (междуфазного) напряжения и силы переменного тока; 1) — за нормирующее значение принимается номинальное значение фазного (междуфазного) напряжения переменного тока;

Рк, Qк и Sк конечное значение диапазона измерения активной, реактивной и полной мощности; Ри, Qи и Sи измеренное значение активной, реактивной и полной мощности.

Таблица 3 – Основные технические характеристики

Tuosingu 5 Conobibio Texami teekite kapaktepitetiikii	
Наименование характеристики	Значение
ттаименование характеристики	характеристики
Время установления рабочего режима, с, не более	20
Точность хода внутренних часов, с/сутки, не более	±3
Коэффициенты искажения синусоидальности кривых входного напряжения и	30
тока, %, не более	
Пределы допускаемой дополнительной погрешности преобразования при	
коэффициентах искажения синусоидальности кривых входного напряжения и	0,5
тока от 20 до 30 %, % от значения основной допускаемой погрешности, не	для класса А
более	
Перегрузка в течение 1 минуты	
- по напряжению, В не более	600
-по току, А не более	10

^{2) –} за нормирующее значение принимается конечного значения диапазона измерений силы тока; 3) – за нормирующее значение принимается конечное значение диапазона измерения активно, реактивной и полной мощности;

Полиморомно усроитернотики	Значение
Наименование характеристики	характеристики
Параметры электрического питания:	
- напряжение переменного тока, В	220±44
- частота переменного тока, Гц	от 45 до 55
- коэффициент искажения синусоидальности кривой напряжения, %, не более	30
Потребляемая мощность, В:А, не более	2
Входное сопротивление измерительных входов	
-напряжения, КОм, не менее	300
- силы тока, мОм, не менее	25
Габаритные размеры (длина × ширина × высота), мм, не более	140x90x65
Масса, кг, не более	0,8
Рабочие условия измерений:	
- температура окружающего воздуха, °С	от -40 до +55
- относительная влажность воздуха при температуре +35 °C, %, не более	95
- атмосферное давление, кПа	от 84,0 до 106,7
Пределы допускаемой дополнительной погрешности преобразования	
- при измерении силы тока, вызванной изменением температуры окружающего	
воздуха в диапазоне от +35 °C до + 55 °C и в диапазоне от 0 до минус 40 °C, % от	
значения основной допускаемой погрешности на каждые 10 °C;	0,5
- при измерении напряжения переменного тока в диапазоне от минус 40 до +10 °C, %	
от значения основной допускаемой погрешности на каждые 10 °C	0,5
Средняя наработка на отказ, ч	100000
Средний срок службы, лет	15

Знак утверждения типа

наносится на Т400 методом лазерной гравировки или металлографики и на титульном листе формуляра и руководства по эксплуатации типографским способом.

Комплектность средства измерений

Таблица 4 – Комплектность средства измерений

Наименование	Обозначение	Кол-во
Преобразователь измерительный многофункциональный «ПАРМА Т400»	PA1.016.000	1 шт.
Формуляр	РА1.016.000ФО	1экз.
компакт -диск с ПО, руководством по эксплуатации РА1.016.000РЭ и методикой поверки РА1.016.000МП	_	1 шт.
кабель USB В \leftarrow USB A для подключения ПК $^{1)}$	_	1 шт.
заглушка USB B	_	1 шт.
упаковочная коробка	_	1 шт.
Примечание:		
1) поставляется при наличии в договоре поставки		

Поверка

осуществляется по документу РА1.016.000МП «Преобразователь измерительный многофункциональный «ПАРМА Т400». Методика поверки», утвержденному Φ ГУП «ВНИИМС» 21.07.2020 г.

Основное средство поверки:

- калибратор напряжения и тока эталонный многофункциональный «ПАРМА ГС8.03» (регистрационный номер в Федеральном информационном фонде 46614-11, 3.2).

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится в свидетельство о поверке и (или) на корпус, и (или) в формуляр.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к преобразователям измерительным многофункциональным «ПАРМА Т400»

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия

ТУ 4221-021-31920409-2009 Преобразователь измерительный многофункциональный «ПАРМА Т400». Технические условия

Изготовитель

Общество с ограниченной ответственностью «ПАРМА» (ООО «ПАРМА»)

ИНН 7812045760

Адрес: 198216, г. Санкт-Петербург, Ленинский пр., 140, литер А, помещение 15Н.

Телефон: 8 (812) 346-86-10, факс: 8 (812) 376-95-03.

Web-сайт: www.parma.spb.ru E-mail: parma@parma.spb.ru

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы» (ФГУП «ВНИИМС»)

Адрес: 119361, г. Москва, ул. Озерная, д. 46

Телефон: 8 (495) 437-55-77 Факс: 8 (495) 437-56-66 E-mail: office@vniims.ru

Аттестат аккредитации ФГУП «ВНИИМС» по проведению испытаний средств измерений в целях утверждения типа № 30004-13 от 29.03.2018 г.