Приложение № 28 к перечню типов средств измерений, прилагаемому к приказу Федерального агентства по техническому регулированию и метрологии от «2» ноября 2020 г. № 1789

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Счетчики электрической энергии многофункциональные однофазные M2M-1 и M2M-1S

Назначение средства измерений

Счетчики электрической энергии многофункциональные однофазные M2M-1 и M2M-1S (далее - счетчики) предназначены для измерений активной (АЭ) и реактивной (РЭ) электрической энергии прямого или обратного направления по дифференцированным во времени тарифам в однофазных сетях переменного тока промышленной частоты.

Описание средства измерений

Принцип действия счетчиков основан на вычислении действующих значений тока и напряжения, активной энергии, мощности, коэффициента мощности и частоты сети переменного тока по измеренным мгновенным значениям входных сигналов тока и напряжения. Счетчики также обеспечивают отсчет времени, календарной даты и вывод данных на жидкокристаллический индикатор (ЖКИ).

Счетчики могут использоваться как автономно, так и в автоматизированных информационно-измерительных системах учета электрической энергии для передачи измерительных или вычислительных параметров на диспетчерский пункт по контролю, учету и распределению электрической энергии.

Счетчики имеют в своем составе датчики тока и напряжения, внутренние часы, специальный измерительный преобразователь, микроконтроллер, энергонезависимую память, источник питания, жидкокристаллический индикатор для просмотра информации, кнопки управления, световые индикаторы, отключающее реле, оптический порт, основной канал связи: 2G (GPRS) или IoT (eMTC/NB-IoT/GPRS/EDGE); резервный канал связи, активируемый при установке модуля расширения: PLC, Ethernet, ZigBee, LoRa, RS-485.

Конструктивно счетчик выполнен в пластмассовом корпусе. Конструкция счетчика соответствует требованиям ГОСТ 31818.11-2012. Основные клеммы счетчика, предназначенные для подключения к электрической сети, выполнены из электротехнического сплава. Дополнительные контакты клеммной колодки предназначены для цифровых интерфейсов при наличии установленных модулей расширения. На передней панели счетчика расположены кнопки управления режимами индикации дисплея.

Токи и напряжения измеряемой сети через соответствующие зажимы и входные элементы поступают на соответствующие входы измерительного преобразователя, который выполняет преобразование аналоговых сигналов напряжения и тока в цифровые значения этих величин.

Центральный процессор принимает результаты измерений и размещает их в энергонезависимой памяти, поддерживает связь через интерфейсы основного и резервного канала связи, через оптический порт и выводит информацию на дисплей.

Измеренные данные, параметры конфигурации, статусная и иная информация хранятся в энергонезависимой памяти и могут отображаться на жидкокристаллическом индикаторе


счетчика.

С помощью программного обеспечения возможно осуществление настройки параметров счетчика, а также считывание данных, при этом связь компьютера со счетчиком может осуществляться как через оптический порт, так и через основной или резервный каналы связи.

Для осуществления мер безопасности и надежности перед настройкой параметров счетчика необходимо пройти процедуру идентификации.

Общий вид счетчиков, с указанием схем пломбировки от несанкционированного доступа, приведены на рисунках 1 и 2.

Структура условного обозначения

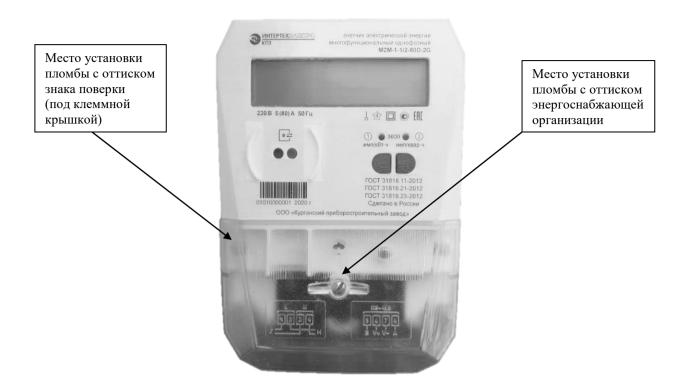


Рисунок 1 — Общий вид счетчиков M2M-1 и схема пломбировки от несанкционированного доступа

Место установки

пломбы с оттиском

энергоснабжающей организации

Место установки пломбы с оттиском знака поверки

Рисунок 2 — Общий вид счетчиков M2M-1S и схема пломбировки от несанкционированного доступа

Программное обеспечение

По своей структуре ПО разделено на метрологически значимую и метрологически незначимую части, имеет контрольные суммы, раздельно рассчитываемые для каждой части, обе части записываются в устройство на стадии производства счетчика, при этом метрологически значимая часть не допускает изменений после калибровочных процедур и выпуска с производства, метрологически незначимая часть может изменяться в целях обновления.

Уровень защиты программного обеспечения «высокий» в соответствии с Р 50.2.077-2014.

Таблица 1 – Идентификационные данные программного обеспечения

Идентификационные данные (признаки) для вариантов исполнений	Значение
Идентификационное наименование ПО	Метрологически значимая часть ПО KPZ_pwrm_metrology
Номер версии (идентификационный номер) ПО	не ниже 1.0.0.0
Цифровой идентификатор ПО	•
Алгоритм вычисления цифрового идентификатора ПО	CRC32

Метрологические и технические характеристики

Таблица 2 - Метрологические характеристики

worming 2 Triesportorin reekine Kapakrepherinkii		
Наименование характеристики	Значение	
Класс точности по активной энергии ГОСТ 31819.21-2012	1	
Класс точности по реактивной энергии ГОСТ 31819.23-2012	2	
Номинальное напряжение U _{ном} , В	230	
Рабочий диапазон напряжений, В	от 160 до 265	
Базовый ток I_6 , A	5	
Максимальный ток Імакс, А	80; 100; 120	

Продолжение таблицы 2

Стартовый ток, А	
- ΓOCT 31819.21-2012	
- класс точности счетчика 1	$0.004 \cdot I_{6}$
- ΓΟCT 31819.23-2012	
- класс точности счетчика 2	$0.004 \cdot I_{6}$
Рабочий диапазон частоты сети, Гц	50±2,5
Погрешность хода часов, с	±1

Таблица 3 – Основные технические характеристики

Гаолица 3 – Основные технические характеристики	
Наименование характеристики	Значение
Значения постоянной счетчика по активной электрической энергии, имп/кВт·ч	3600
Значения постоянной счетчика по реактивной электрической энергии, имп/квар·ч	3600
Разрешающая способность счетного механизма отсчетного устройства, кВт·ч, не менее	0,01
Полная мощность, потребляемая каждой цепью тока при базовом токе, B·A, не более	4
Полная (активная) мощность, потребляемая каждой цепью напряжения при номинальном значении напряжения, В·А (Вт), не более	10 (2)
Длительность хранения информации при отключении питания, лет, не менее	10
Число тарифов, не более	4
Глубина хранения значений активной и реактивной электрической энергии в обоих направлениях на начало месяца, месяцев, не менее	36
Глубина хранения значений активной и реактивной электрической энергии в обоих направлениях на начало суток, суток, не менее	365
Интервал усреднения мощности для фиксации профиля нагрузки, минут	от 1 до 60
Глубина хранения профиля нагрузки при интервале усреднения 60 минут, суток, не менее	365
Количество записей в журнале событий для каждого вида событий/всего, не менее	500/5000
Количество оптических испытательных выходов с параметрами по ГОСТ 31818.11-2012	1
Скорость обмена информацией по интерфейсам, бит/с, не менее	1200
Габаритные размеры (длина×ширина×высота), мм, не более	175×121×62
Условия эксплуатации:	
- температура окружающей среды, °С	от -40 до +70
- относительная влажность, %	от 40 до 80
- атмосферное давление, кПа	
	от 70 до 106
Масса, кг, не более	0,7
Средняя наработка на отказ, ч	262000
<u> </u>	

Знак утверждения типа

наносится на панель счетчика лазерной гравировкой (или другим способом, не ухудшающим качества), на титульный лист паспорта и руководства по эксплуатации типографским способом.

Комплектность средства измерений

Таблица 4 – Комплектность средства измерений

Наименование	Обозначение	Количество
Счетчик электрической энергии однофазный многофункциональный	M2M-1 и M2M-1S	1 шт.
Руководство по эксплуатации	КРZ.01.002.РЭ	1 экз.
Технический паспорт	M2M-1KPZ.01.001.ΠC	1 экз.
Методика поверки	РТ-МП-7174-551-2020	1 экз.

Поверка

осуществляется по документу РТ-МП-7174-551-2020 «ГСИ. Счетчики электрической энергии многофункциональные однофазные M2M-1 и M2M-1S. Методика поверки», утвержденному ФБУ «Ростест-Москва» 28 апреля 2020 г.

Основные средства поверки:

- система переносная поверочная PTS 3.3C (регистрационный номер в Федеральном информационном фонде 60751-15);
- установки для проверки электрической безопасности GPI-725 (регистрационный номер в Федеральном информационном фонде 19971-00);
- приемник временной синхронизации NV08C-CSM-N24M (регистрационный номер в Федеральном информационном фонде 63278-16).

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых средств измерений с требуемой точностью.

Знак поверки, в виде оттиска поверительного клейма и пломбы, наносится в паспорт при первичной поверке, и на свидетельство о поверке при периодической поверке.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к счетчикам электрической энергии многофункциональным однофазным M2M-1 и M2M-1S

ГОСТ 31818.11-2012 Аппаратура для измерения электрической энергии переменного тока. Общие требования. Испытания и условия испытаний. Часть 11. Счетчики электрической энергии

ГОСТ 31819.21-2012 Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 21. Статические счетчики активной энергии классов точности 1 и 2

ГОСТ 31819.23-2012 Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 23. Статические счетчики реактивной энергии (в части счетчиков реактивной энергии классов точности 1 и 2)

ТУ 26.51.63-001-42874687-2020 Счетчики электрической энергии однофазные многофункциональные M2M-1 и M2M-1S, трехфазные M2M-3, M2M-3S и M2M-3T. Технические условия

Изготовитель

Общество с ограниченной ответственностью «Курганский приборостроительный завод» (ООО «КПЗ»)

ИНН 7708369158

Юридический адрес: 107045, г. Москва, Просвирин переулок, д. 4, этаж 2, каб. 2110

Адрес: 640003, г. Курган, д. 3, стр. 4, пом. 231

Телефон (факс): +7 (495) 660-97-14

Web-сайт: www.kpsz.ru E-mail: info@kpsz.ru

Испытательный центр

Федеральное бюджетное учреждение «Государственный региональный центр стандартизации, метрологии и испытаний в г. Москве и Московской области»

(ФБУ «Ростест-Москва»)

Адрес: 117418, г. Москва, Нахимовский проспект, д. 31

Телефон: +7 (495) 544-00-00

E-mail: info@rostest.ru Web-сайт: www.rostest.ru

Регистрационный номер RA.RU.310639 в Реестре аккредитованных лиц в области обеспечения единства измерений Росаккредитации.