Приложение № 11 к сведениям о типах средств измерений, прилагаемым к приказу Федерального агентства по техническому регулированию и метрологии от «20» ноября 2020 г. № 1871

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Контрольно-проверочная аппаратура системы пеленга КПА СП ЦДКТ.464534.001

Назначение средства измерений

Контрольно-проверочная аппаратура системы пеленга КПА СП ЦДКТ.464534.001 (далее – КПА СП) предназначена для:

- измерения параметров радиосигналов, излучаемых изделием «Система пеленга ЦДКТ.462424.019» (далее СП) в диапазонах частот 406 и 121,5 МГц;
- проверки НЧ-каналов управления полукомплектов СП;
- проверки по НЧ-каналу приёма СП информации, содержащей навигационные данные;
- $-\,$ проверки приёмного устройства СП в диапазоне 130 МГц на этапах приёмо-сдаточных испытаний СП и автономных проверок при входном контроле СП.

Описание средства измерений

Принцип действия КПА СП основан на измерении технических характеристик радиосигналов СП и их цифровой обработке с использованием специального программноматематического обеспечения.

КПА СП обеспечивает проверку функционирования и измерение технических характеристик радиосигналов излучаемых СП на литерных частотах в диапазоне от 406,0 до 406,1 МГц (диапазон Д1), радиосигнала привода спасательных служб в диапазоне частот от 121,3 до 121,7 МГц (диапазон Д2), а также передачу амплитудно-модулированного радиосигнала в диапазоне от 130,160 до 130,174 МГц (диапазон Д3) для проверки приёмного тракта СП.

СП входит в состав пилотируемого транспортного корабля (ПТК) нового поколения и предназначена для определения местоположения возвращаемого аппарата (ВА), а также для ведения двухсторонней радиосвязи с поисково-спасательными подразделениями на этапе парашютирования и после посадки ПТК. При проверке функционирования СП, КПА СП имитирует подключение к бортовым системам.

В состав КПА СП входит:

- блок обработки ЦДКТ.464425.011 (далее БО);
- ПЭВМ с установленной на предприятии-изготовителе программой «КРА SP» ЦДКТ.00720-01.

Конструктивно КПА СП выполнена в виде моноблока БО и ПЭВМ.

БО обеспечивает:

- приём радиосигналов в рабочем диапазоне частот;
- обработку данных радиосигналов в рабочем диапазоне частот;
- формирование команд управления;
- формирование и передачу радиосигнал в диапазоне частот 130 МГц,
- передачу данных результатов измерений и демодуляции в ПЭВМ.

БО состоит из следующих функциональных узлов:

- модуль первичной обработки сигналов (модуль ПОС);
- модуль вторичной обработки сигналов (модуль ВОС);
- модуль контроля телеметрии (модуль КТМ);

модуль питания.

Модуль ПОС построен на базе двухканального супергетеродинного приёмника, обеспечивающего работу в диапазонах Д1 и Д2.

Модуль ВОС в процессе работы осуществляет детектирование, обнаружение, демодуляцию, измерение параметров радиосигналов, передачу на ПЭВМ цифровых отсчётов радиосигналов для демодуляции и результатов измерений для их последующего отображения на дисплее ПЭВМ, а также обеспечивает формирование амплитудно-модулированного радиосигнала с заданными параметрами для проверки работоспособности радиоприёмного устройства СП.

Модуль КТМ предназначен для приёма сигналов, излучаемых СП, их обработку и передачу результатов для отображения на дисплее ПЭВМ.

Модуль питания предназначен для формирования напряжения питания КПА СП от сети переменного напряжения, а также формирования выходного напряжения питания от 23 до 34 В СП во время проверок.

Основные функции по измерению характеристик принимаемых радиосигналов, демодуляции радиосигналов и управлению отображением результатов работы КПА СП реализованы в ПЭВМ в программе «KPA SP».

ПЭВМ посредством программы «КРА SP» обеспечивает:

- управление режимами работы БО;
- управление режимами работы СП;
- измерение характеристик принимаемых радиосигналов;
- демодуляцию радиосигналов;
- отображение результатов измерений параметров радиосигналов диапазонов Д1, Д2;
- отображение параметров сигнала излучения в диапазоне ДЗ;
- формирование протоколов измерений в электронном виде;
- подключение к принтеру для распечатывания протоколов измерений.

Общий вид КПА СП приведён на рисунках 1.

Место нанесения наклейки «Знак утверждения типа» приведено на рисунке 2, а схема пломбировки КПА СП от несанкционированного доступа приведена на рисунке 3.

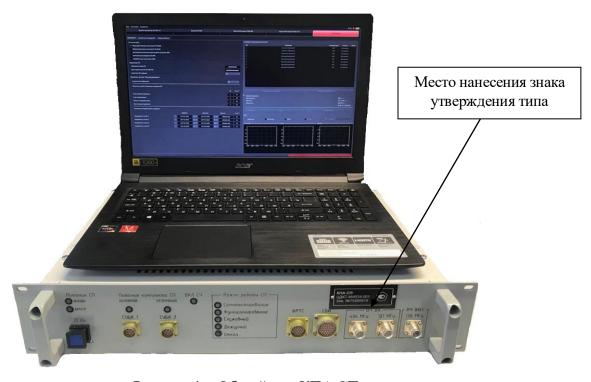


Рисунок 1 – Общий вид КПА СП

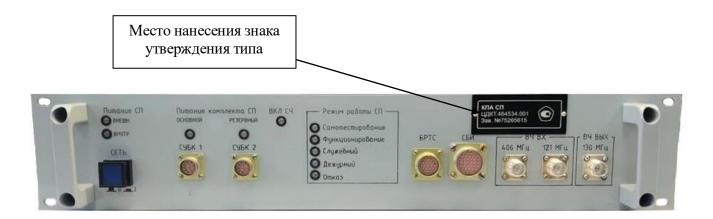


Рисунок 2 – Общий вид лицевой панели КПА СП

Рисунок 3 – Общий вид задней панели КПА СП

Программное обеспечение

Программное обеспечение (ПО) КПА СП представляет собой программный продукт «libprocessing.so.01.0.0».

Метрологически значимая часть ПО КПА СП и измеренные данные не требуют специальных средств защиты от преднамеренных и непреднамеренных изменений. Уровень защиты программного обеспечения «низкий» в соответствии с Р 50.2.077-2014.

Идентификационные данные ПО представлены в таблице 1.

Таблица 1 – Идентификационные данные программного обеспечения

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	libprocessing.so.01.0.0
Номер версии (идентификационный номер) ПО	не ниже 01.01
Цифровой идентификатор ПО	8b04b46d2017c4c25492447e98dce638
Алгоритм вычисления цифрового идентификатора ПО	MD5

Метрологические и технические характеристики Метрологические и технические характеристики КПА СП приведены в таблицах 2-5.

Таблица 2 - Метрологические характеристики радиосигнала диапазона Д1

Наименование характеристики	Значение
1	2
Диапазон частот, МГц	от 406,000 до 406,100
Пределы допускаемой абсолютной погрешности измерений частоты сигнала диапазона Д1, МГц	±1·10 ⁻⁴
Диапазон измерений уровня мощности входного сигнала в диапазоне Д1, дБ относительно 1 мВт	от -10 до +40
Пределы допускаемой абсолютной погрешности измерений уровня мощности входного сигнала в диапазоне Д1, дБ	±1
Диапазон измерений времени нарастания выходной мощности сигнала в диапазоне Д1 от 0,1 до 0,9 максимального значения, мс	от 1,0 до 10,0
Пределы допускаемой абсолютной погрешности измерений времени нарастания выходной мощности сигнала в диапазоне Д1 от 0,1 до 0,9 максимального значения, мс, не более	±0,1
Диапазон измерений длительности немодулированной несущей, мс	от 158,0 до 162,0
Пределы допускаемой абсолютной погрешности измерений длительности немодулированной несущей, мс	±1,0
Диапазон измерений длительности цифрового сообщения, мс	от 430,0 до 530,0
Пределы допускаемой абсолютной погрешности измерений длительности цифрового сообщения, мс	±1,0
Диапазон измерений длительности бита информации, мс	от 2,475до 2,531*
Пределы допускаемой абсолютной погрешности измерений длительности бита информации, мс	±0,003**
Диапазон измерений отклонения фазы при двухфазной модуляции,	
рад: - положительное отклонение - отрицательное отклонение	от 0,90 до 1,30 от -0,90 до -1,30
Пределы допускаемой абсолютной погрешности измерений	
отклонения фазы при двухфазной модуляции, рад:	ΔΟ ΟΔ
положительное отклонениеотрицательное отклонение	±0,04 ±0,04
Диапазон измерений симметрии модуляции	от 0,00 до 0,05
Пределы допускаемой абсолютной погрешности измерений симметрии модуляции	±0,01
Диапазон измерений периода повторения информационного сообщения, с	от 10,00 до 100,00
Пределы допускаемой абсолютной погрешности измерений периода повторения информационного сообщения, с	±0,01

Продолжение таблицы 2

1	2
Диапазон измерений времени нарастания модулирующего сигнала, мкс	от 30 до 300
Пределы допускаемой абсолютной погрешности измерений времени нарастания модулирующего сигнала, мкс	±15
Диапазон измерений времени спада модулирующего сигнала, мкс	от 30 до 300
Пределы допускаемой абсолютной погрешности измерений времени спада модулирующего сигнала, мкс	±15
Диапазон измерений кратковременной относительной нестабильности частоты диапазона Д1 за 100 мс	от 1·10 ⁻¹⁰ до 1·10 ⁻⁸
Пределы допускаемой относительной погрешности измерений кратковременной относительной нестабильности частоты диапазона Д1 за 100 мс	±1·10 ⁻¹⁰
Диапазон измерений относительного среднего наклона линейного дрейфа частоты диапазона Д1, относительное значение за 18 измерений	от -1·10 ⁻⁸ до +1·10 ⁻⁸
Пределы допускаемой относительной погрешности измерений среднего наклона линейного дрейфа частоты диапазона Д1, относительное значение за 18 измерений	±1·10 ⁻¹⁰
Диапазон измерений остаточного ухода от линейного дрейфа частоты диапазона Д1, относительное значение за 18 измерений	от 1·10 ⁻¹⁰ до 1·10 ⁻⁸
Пределы допускаемого остаточного ухода от линейного дрейфа частоты диапазона Д1, относительное значение за 18 измерений	$\pm 1 \cdot 10^{-10}$

Таблица 3 - Метрологические характеристики радиосигнала диапазона Д2

Наименование характеристики	Значение
Диапазон частот, МГц	от 121,300 до 121,700
Пределы допускаемой абсолютной погрешности измерений частоты сигнала диапазона Д2, МГц	±1·10 ⁻⁴
Диапазон измерений уровня мощности входного сигнала в диапазоне Д2, дБ относительно 1 мВт	от -10 до +35
Пределы допускаемой абсолютной погрешности измерений уровня мощности входного сигнала в диапазоне Д2, дБ	±1
Диапазон измерений коэффициента амплитудной модуляции сигнала в диапазоне Д2, %	от 80 до 100
Пределы допускаемой абсолютной погрешности измерений коэффициента амплитудной модуляции сигнала в диапазоне Д2, %	±10
Диапазон измерений изменения свип-тона, Гц	от 300 до 1600
Пределы допускаемой абсолютной погрешности измерений изменения свип-тона, Гц	±30

^{* –} соответствует диапазону измерений скорости передачи информации от 396 до 404 бит/с; ** – соответствует пределу допускаемой абсолютной погрешности измерений скорости передачи информации ±1 бит/с

Таблица 4 - Метрологические характеристики радиосигнала диапазона ДЗ

Наименование характеристики	Значение
Диапазон частот, МГц	от 130,160 до 130,174
Пределы допускаемой абсолютной погрешности установки номинальной частоты сигнала в диапазоне Д3, МГц	±1·10 ⁻³
Диапазон установки номинального значения мощности радиосигнала в диапазоне Д3, дБ относительно 1 мВт	от -97 до -20
Пределы допускаемой абсолютной погрешности установки номинального значения мощности сигнала в диапазоне Д3, дБ	±1
Диапазон установки частот амплитудной модуляции, Гц	от 300 до 3400
Пределы допускаемой абсолютной погрешности диапазона установки частот амплитудной модуляции, Гц	±100
Диапазон установки коэффициента амплитудной модуляции сигнала в диапазоне Д3, %	от 70 до 100
Пределы допускаемой абсолютной погрешности установки коэффициента амплитудной модуляции сигнала в диапазоне Д3, %	±10

Таблица 5 – Основные технические характеристики

Наименование характеристики	Значение
Рабочие условия эксплуатации: - температура окружающей среды, °С - относительная влажность воздуха, %, не более	от +5 до +35 85
Напряжение питания от сети переменного тока частотой 50 Гц, В	от 198 до 242
Потребляемая мощность, Вт, не более	800
Масса, кг, не более	20
Габаритные размеры (ширина × глубина × высота), мм, не более - блок обработки - ПЭВМ	483×403×89 420×320×80
Время выхода в рабочий режим, мин, не более	15
Назначенный ресурс, ч (в течение назначенного срока службы – 15 лет)	5000

Знак утверждения типа

наносится типографским способом на титульный лист руководства по эксплуатации и на корпус блока обработки в виде металлической информационной таблички с гравировкой.

Комплектность средства измерений

Таблица 6 – Комплектность средства измерений

Наименование	Обозначение	Количество
Контрольно-проверочная аппаратура системы пеленга КПА СП	ЦДКТ.464534.001	1 шт.
Блок обработки	ЦДКТ.464425.011	1 шт.
ПЭВМ	-	1 компл.
Программа «KPF SP»	ЦДКТ.00720.01	установлена на ПЭВМ
Комплект НЧ кабелей	ЦДКТ.442616.001	1 компл.
Комплект НЧ кабелей	ЦДКТ.442616.002	1 компл.
Комплект эксплуатационной документации согласно ведомости	-	1 компл.
Ведомость эксплуатационных документов	ЦДКТ.464534.001ВЭ	1 экз.
Комплект упаковочный	ЦДКТ.464956.039	1 компл.
Методика поверки	РТ-МП-6979-441-2020	1 экз.

Поверка

осуществляется по документу РТ-МП-6979-441-2020 «ГСИ. Контрольно-проверочная аппаратура системы пеленга КПА СП ЦДКТ.464534.001. Методика поверки», утвержденному ФБУ «Ростест-Москва» 07.07.2020 г.

Основные средства поверки:

- генератор сигналов Agilent N5182B (регистрационный номер в Федеральном информационном фонде 53063-13);
- стандарт частоты рубидиевый GPS-12RG (регистрационный номер в Федеральном информационном фонде 43830-10);
- преобразователь измерительный NRP-Z24 (регистрационный номер в Федеральном информационном фонде 37008-08);
- приёмник измерительный R&S FSMR50 (регистрационный номер в Федеральном информационном фонде 50678-12).

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к контрольно-проверочной аппаратуре системы пеленга КПА СП ЦДКТ.464534.001

ЦДКТ.464534.001 ТУ Контрольно-проверочная аппаратура системы пеленга КПА СП. Технические условия

Изготовитель

Филиал акционерного общества «Объединённая ракетно-космическая корпорация» - «Научно-исследовательский институт космического приборостроения»

(филиал АО «ОРКК» - «НИИ КП»)

ИНН 7722692000

Адрес: 111250 г. Москва, ул. Авиамоторная, д. 53

Телефон: 8 (495) 517-92-00 * 66-26

Факс: 8 (495) 673-47-19 E-mail: info@orkkniikp.ru

Испытательный центр

Федеральное бюджетное учреждение «Государственный региональный центр стандартизации, метрологии и испытаний в г. Москве и Московской области»

(ФБУ «Ростест-Москва»)

Адрес: 117418 г. Москва, Нахимовский проспект, 31

Телефон: 8 (495) 544-00-00 E-mail: info@rostest.ru Web-сайт: rostest.ru

Регистрационный номер RA.RU.310639 в Реестре аккредитованных лиц в области обеспечения единства измерений Росаккредитации.