Приложение № 17 к сведениям о типах средств измерений, прилагаемым к приказу Федерального агентства по техническому регулированию и метрологии от «20» ноября 2020 г. № 1860

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Интерферометры лазерные ФТИ

Назначение средства измерений

Интерферометры лазерные ФТИ (далее интерферометры) предназначены для измерений отклонений от плоскостности оптических поверхностей.

Описание средства измерений

Измерение отклонений от плоскостности оптических поверхностей основано на анализе деформации формы интерференционных полос возникающих в промежутке между поверхностью контролируемой детали и эталонной поверхностью сравнения в результате интерференции отраженных от них волновых фронтов.

Интерферометр состоит из следующих основных блоков: оптико-механического блока, блока байонетного крепления эталонной пластины и компьютера с программным обеспечением (ПО) для управления интерферометром и анализа интерферограм. Опционально интерферометр может оснащаться блоком фазового сдвига с пъезоприводом.

В качестве источника света в интерферометре используется Не-Ne лазер с длиной волны 632 нм. Оптико-механический блок преобразует лазерное излучение и формирует плоский волновой фронт. Далее волновой фронт с помощью эталонной пластины, закрепленной в байонетном креплении, делится на два. Один волновой фронт — опорный - отражается от поверхности эталонной пластины непосредственно назад в интерферометр. Другой — рабочий волновой фронт - проходит эталон и искажается контролируемой деталью. Он также возвращается в интерферометр и интерферирует с опорным. Анализ получаемой интерференционной картины дает информацию об отклонениях от плоскостности измеряемой оптической поверхности.

Интерферометры изготовлены одной модификации: ФТИ-100 (таблица 2).

Внешний вид интерферометров приведен на рисунке 1.

Пломбирование интерферометров лазерных ФТИ от несанкционированного доступа не предусмотрено.

Рисунок 1 – Внешний вид интерферометров лазерных ФТИ-100

Программное обеспечение

Интерферометры оснащены программным обеспечением (ПО) DiOpto. Програмное обеспечение позволяет вычислять отклонения формы контролируемой поверхности от эталонной плоскости спектральным методом (SM) и методом фазового сдвига (PS).

Вычислительные алгоритмы ПО расположены в заранее скомпилированных бинарных файлах и не могут быть модифицированы, они блокируют редактирование для пользователей и не позволяют удалять, создавать новые элементы или редактировать отчеты.

Таблица 1 - Идентификационные данные ПО интерферометров

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	DiOpto
Номер версии (идентификационный номер) ПО	v.3.13 и выше
Цифровой идентификатор ПО	-

Программное обеспечение является неизменным. Средства для программирования или изменения метрологически значимых функций отсутствуют.

Для защиты ПО от несанкционированного доступа используют USB-ключ.

Защита программного обеспечения интерферометров соответствует уровню «средний» в соответствии с Р 50.2.077-2014.

Метрологические и технические характеристики

Таблица 2 - Метрологические характеристики интерферометров

Модификация	ФТИ-100	
Диапазон измерений отклонений от	от 0,03 до 2,00	
плоскостности, мкм		
Пределы допускаемой абсолютной		
погрешности измерений отклонений от	$\pm 0,025$	
плоскостности, мкм		
Повторяемость измерений, не более, мкм	0,008	

Таблица 3 – Технические характеристики интерферометров

Модификация	ФТИ-100
Максимальный диаметр измеряемых оптических поверхностей, мм	100
Класс лазера по ГОСТ 31581-2012	3A
Длина волны лазера, не более, нм	
- He-Ne лазер	633
Мощность, не более, мВт	4
Допустимое значение частоты возмущающих гармонических	
вибраций, не более, Гц	30
Параметры электропитания	
Напряжение переменного тока, В	от 200 до 240
Частота, Гц	от 49 до 51
Масса, не более, кг	18
Габаритные размеры, не более, мм	
- длина	270
- ширина	205
- высота	500
Условия эксплуатации	
- температура окружающей среды, °С	От +18 до +22
- относительная влажность, %	От 50 до 90

Знак утверждения типа

наносится на титульный лист руководства по эксплуатации типографским способом

Комплектность средства измерений

Таблица 4 - Комплектность средства измерений

Наименование	Обозначение	Количество
Интерферометр лазерный	ФТИ-100	5 шт.
Компьютер с ПО		1 шт.
Паспорт		5 шт.
Методика поверки	MΠ № 203-7-2019	1 экз.

Поверка

осуществляется по документу МП № 203-7-2019 «ГСИ. Интерферометры лазерные ФТИ. Методика поверки», утвержденному ФГУП «ВНИИМС» 26 марта 2019 г.

Основное средство поверки:

- мера отклонений от плоскостности Ø 120 мм, рег. № 48279-11.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых средств измерений с требуемой точностью.

Знак поверки наносится на свидетельство о поверке.

Сведения о методиках (методах) измерений

приведены в эксплуатационных документах.

Нормативные документы, устанавливающие требования к интерферометрам лазерным ФТИ

ГОСТ 8.661-2018 ГСИ. Государственная поверочная схема для средств измерений параметров отклонения от плоскостности оптических поверхностей размером до 200 мм

Изготовитель

Закрытое Акционерное общество «Дифракция» (ЗАО «Дифракция»)

ИНН 5408270404

Адрес: 630128, Новосибирск, ул. Кутателадзе, д. 4Г, оф.218

Тел./факс: +7 (383)-332-50-60

E-mail: www.diffraction.ru, web-сайт: v.n.homutov@gmail.com

Заявитель

Акционерное общество «Научно-исследовательский институт оптико-электронного приборостроения» (АО «НИИ ОЭП»)

ИНН 4725481940

Адрес: 188540, Ленинградская обл., г. Сосновый Бор, ул. Ленинградская, д.29, литер Т

Тел./факс: 8(81369) 22778/ 8(81369) 45373

E-mail: contact@niioep.ru, web-сайт: www.niioep.ru

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы»

Адрес: 119361, г. Москва, ул. Озерная, д. 46

Тел.: +7 (495) 437-55-77, факс: +7 (495) 437-56-66 E-mail: office@vniims.ru, web-сайт: www.vniims.ru

Аттестат аккредитации $\Phi\Gamma$ УП «ВНИИМС» по проведению испытаний средств измерений в целях утверждения типа № 30004-13 от 29.03.2018 г.