Приложение № 7 к сведениям о типах средств измерений, прилагаемым к приказу Федерального агентства по техническому регулированию и метрологии от «2» декабря 2020 г. № 1961

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Весы электронные Pocket Truck

Назначение средства измерений

Весы электронные Pocket Truck (далее - весы) предназначены для статического измерения массы металла (профилей и прутков).

Описание средства измерений

Конструктивно весы состоят из грузоприемного устройства (ГПУ) и индикатора (весоизмерительного прибора с аналого-цифровым преобразователем и дисплеем для отображения результата взвешивания) DISOMAT Tersus (изготовитель — фирма «SCHENCK PROCESS GmbH», Германия, рег. № 53571-13). В состав ГПУ входят одна платформа, представляющая собой тележку с оснасткой для укладки металла (сварной рамы, в верхней части которой находятся 10 шт. нижних роликов и 10 пар опорных роликов). Эта платформа опирается на комплект из четырех датчиков весоизмерительных тензорезисторных RTN Schenk (изготовитель — фирма «SCHENCK PROCESS GmbH», Германия, рег. № 21175-13), установленных в приямок в узлы встройки (типа VEN 10-22). Прямое соединение кабелей от датчиков с ГПУ выполнено в распределительной коробке VKK 28004, которая закреплена на соответствующей раме весов. Заводские номера весов 26008/2020, 26009/2020.

Общий вид ГПУ весов представлен на рисунке 1.

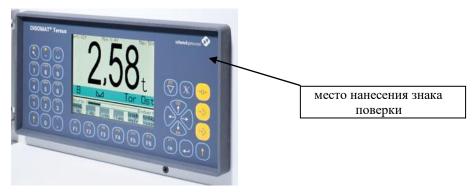


Рисунок 1 – Общий вид весов электронных Pocket Truck

Принцип действия весов основан на преобразовании деформации упругих элементов весоизмерительных тензорезисторных датчиков (далее-датчики), возникающей под действием силы тяжести взвешиваемого груза, а аналоговый электрический сигнал, изменяющийся пропорционально массе груза. Результаты взвешивания выводятся на дисплей весоизмерительного прибора.

Весы оснащены интерфейсами RS 232 и RS 485, которые позволяют подключать различные периферийные устройства (принтер, вторичный дисплей, ПК).

Знак поверки в виде наклейки наносится на корпус прибора весоизмерительного. Место нанесения знака поверки, а так же схема пломбировки корпуса интерфейсного разъема прибора весоизмерительного от несанкционированного доступа к функциям юстировки приведены на рисунках 2, 3.

Pисунок 2 — Место нанесения знака поверки на прибор весоизмерительный DISOMAT Tersus

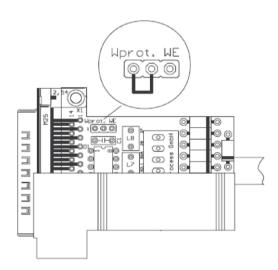


Рисунок 3 — Схема пломбировки корпуса интерфейсного разъема

Маркировка весов производится на табличке, закрепленной на поверхности ГПУ и разрушающейся при снятии, на которую наносятся:

- обозначение весов;
- максимальная нагрузка (Мах);
- минимальная нагрузка (Min);
- действительная цена деления (d) и поверочный интервал (e);
- заводской номер весов;
- класс точности;
- предельные значения температуры;
- знак утверждения типа;
- наименования предприятия изготовителя;
- дата производства весов.

Программное обеспечение

Программное обеспечение (далее – ΠO) весов является встроенным и полностью метрологически значимым.

Защита от несанкционированного доступа к настройкам и данным измерений обеспечивается защитной пломбой, предотвращающей доступ к переключателю юстировки (рис. 3).

ПО не может быть модифицировано без нарушения защитной пломбы и изменения положения переключателя юстировки. Кроме того, изменение ПО невозможно без применения специализированного оборудования производителя. Доступ к изменению настроек и данных измерений защищен паролем, а дата и время изменения параметров юстировки и настройки фиксируются в журнале событий весов. Эта информация может быть выведена на табло весов, ее изменения извне невозможны.

Идентификационным признаком ПО служит номер версии, который может быть вызван в меню прибора.

Уровень защиты ПО «высокий» в соответствии с P50.2.077-2014.

Идентификационные данные ПО приведены в таблице 1.

Таблица 1 - Идентификационные данные ПО.

Индикатор	Идентификационное наименование ПО	Номер версии (идентификаци онный номер) программного обеспечения	Цифровой идентификатор ПО (контрольная сумма исполнительного кода)	Алгоритм вычисления цифрового идентификатора программного обеспечения
DISOMAT Tersus	VxG 20450	Vxx2045y	_	-

x = A - Z y = 0 - 9

Метрологические и технические характеристики

Значения максимальной нагрузки (Max), минимальной нагрузки (Min), действительной цены деления (d), поверочного интервала (e), интервала нагрузки (m), пределов допускаемой погрешности (mpe) и число поверочных интервалов (n) приведены в таблице 2.

Таблица 2 - Метрологические характеристики весов

Мах,	Min, кг	e=d, кг	n	Для нагрузки m, кг	Пределы допускаемой погрешности при первичной поверке, mpe, кг
10000	100	5	2000	От 100 до 2500 включ.	± 2,5
10000	100	100 5 2000 Св. 2500 до 10000 включ.	± 5,0		

Пределы допускаемой погрешности весов в эксплуатации равны удвоенному значению пределов допускаемой погрешности при первичной поверке (mpe), указанных в таблице 2.

Таблица 3 – Основные технические характеристики

паименование характеристики значение			Значение
--------------------------------------	--	--	----------

^{* -} данные недоступны, так как данное ПО не может быть модифицировано, загружено или прочитано через какой-либо интерфейс.

Класс точности по ГОСТ OIML R 76-1-2011	III (средний)
Диапазон рабочих температур, °С	от +5 до +40
Относительная влажность, %	не более 80
Потребляемая мощность, В.А, не более	500
Параметры электрического питания:	
- напряжение переменного тока, В	от 187 до 242
- частота переменного тока, Гц	50 ± 1
Габаритные размеры ГПУ весов (длина; ширина; высота), мм, не более:	10500x2300x2300
Масса ГПУ, кг, не более	10350

Знак утверждения типа

наносится фотохимическим способом на маркировочную табличку, расположенную на ГПУ, и типографским способом на титульные листы эксплуатационной документации.

Комплектность средства измерений

Таблица 4 - Комплектность средства измерений

Наименование	Обозначение	Заводской номер	Количество
Весы электронные Pocket Truck	-	26008/2020	1 шт.
Весы электронные Pocket Truck	-	26009/2020	1 шт.
Руководство по эксплуатации. Паспорт	CPC0VX01	-	2 экз.

Поверка

осуществляется по документу ГОСТ OIML R-76-1-2011 ГСИ. Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания приложение ДА «Методика поверки весов».

Основные средства поверки:

- рабочий эталон единицы массы 4-го разряда в соответствии с государственной поверочной схемой для средств измерения массы утвержденной Приказом Росстандарта №2818 от 29.12.2018

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на корпус прибора весоизмерительного, а так же в паспорт и свидетельство о поверке.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные документы, устанавливающие требования к весам электронным Pocket Truck

ГОСТ OIML R 76-1-2011 Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания

Государственная поверочная схема для средств измерения массы утвержденная приказом Росстандарта №2818 от 29.12.2018

Изготовитель

Общество с ограниченной ответственностью «Даниели Волга» (ООО «Даниели Волга») ИНН 5249116595 КПП 524901001

Адрес: 606000, РФ, Нижегородская область, г. Дзержинск, Автозаводское шоссе, 48, корпус 2;

Телефон: +7(8313)310-310

E-mail: info.dvg@russia.danieli.com

Испытательный центр

Федеральное бюджетное учреждение «Государственный региональный центр стандартизации, метрологии и испытаний в Кемеровской области» (ФБУ «Кемеровский ЦСМ»)

Адрес: 650991, г. Кемерово, ул. Дворцовая, 2

Телефон: +7 (3842) 36-43-89, факс: +7 (3842) 75-88-66

E-mail: kemcsm@kmrcsm.ru

Аттестат аккредитации по проведению испытаний средств измерений в целях утверждения типа № RA.RU.312319 выдан 21 ноября 2017 г.