Приложение № 19 к сведениям о типах средств измерений, прилагаемым к приказу Федерального агентства по техническому регулированию и метрологии от «7» декабря 2020 г. № 2020

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ЗАО «СК Короча» дополнение №5

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ЗАО «СК Короча» дополнение №5 (далее по тексту – АИИС КУЭ) предназначена для измерений активной и реактивной электроэнергии, сбора, обработки, хранения и передачи полученной информации. Полученные данные и результаты измерений могут использоваться для коммерческих расчетов и оперативного управления выработкой и потреблением электроэнергии.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную двухуровневую автоматизированную систему с централизованным управлением и распределённой функцией измерения.

Первый уровень — измерительно-информационный комплекс (ИИК), включающий в себя измерительные трансформаторы тока (ТТ), измерительные трансформаторы напряжения (ТН), многофункциональные счетчики активной и реактивной электрической энергии (счетчики), установленные на присоединениях, указанных в таблице 2, вторичные измерительные цепи и технические средства приема-передачи данных;

Второй уровень – информационно-вычислительный комплекс (ИВК), включающий в себя виртуальный сервер АИИС КУЭ (далее сервер) базы данных (БД) в среде Windows 8 на базе шасси HP, с устройством синхронизации времени (УСВ-3), автоматизированные рабочие места персонала (APM) и программное обеспечение (ПО).

Первичные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают в счетчик электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности, которые усредняются за период 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мощности.

Измерительная информация на выходе счетчиков из состава измерительных каналов (ИК):

- активная и реактивная электрическая энергия, как интеграл по времени от средней за период 0,02 с активной и реактивной мощности, соответственно, вычисляемая для интервалов времени 30 мин;
 - средняя на интервале времени 30 мин активная (реактивная) электрическая мощность.

Сервер при помощи ПО «АльфаЦентр» автоматически с периодичностью один раз в сутки и/или по запросу опрашивает счетчики и считывает 30-минутные данные коммерческого учета электроэнергии и журналы событий для каждого канала учета, осуществляет обработку измерительной информации (перевод измеренных значений в именованные физические величины с учетом коэффициентов трансформации ТТ, ТН для ИК № 1, 2), помещение измерительной и служебной информации в базу данных и хранение ее.

Обмен информацией между счетчиками и сервером происходит по GPRS.

При выходе из строя линий связи АИИС КУЭ считывание данных из счетчиков возможно проводить в ручном режиме с использованием ноутбука через встроенный оптический порт счетчиков.

На уровне ИВК выполняется формирование и оформление справочных и отчетных документов (отчеты в формате XML). Передача информации в организации—участники оптового рынка электроэнергии осуществляется с АРМ АИИС КУЭ Сервера, через сеть интернет в виде сообщений электронной почты.

АИИС КУЭ оснащена системой обеспечения единого времени (СОЕВ), включающей в себя приемник сигналов спутникового времени УСВ-3, который обеспечивает автоматическую непрерывную синхронизацию часов сервера от источника точного времени синхронизированного с национальной шкалой координированного времени UTC (SU), часы сервера и счетчиков. Время сервера синхронизированы со временем УСВ-3, коррекция времени происходит 1 раз в 5 мин, допустимое рассогласование 1 с. Сличение времени часов счетчиков со временем часов сервера происходит при каждом обращении к счетчику, корректировка времени часов счетчиков происходит при расхождении со временем часов сервера более чем на 2 с.

Журналы событий счетчиков и сервера ИВК отображают факты коррекции времени с обязательной фиксацией времени до и после коррекции или величины коррекции времени, на которую было скорректировано устройство.

Пломбирование АИИС КУЭ не предусмотрено.

Программное обеспечение

В АИИС КУЭ используется программное обеспечение (ПО) «АльфаЦЕНТР», имеющее сертификат соответствия № ТП 031-15 от 12.03.2015 г. в Системе добровольной сертификации программного обеспечения средств измерений. Уровень защиты ПО от непреднамеренных и преднамеренных изменений предусматривает ведение журналов фиксации ошибок, фиксации изменений параметров, защиты прав пользователей и входа с помощью пароля, защиты передачи данных с помощью контрольных сумм, что соответствует уровню «средний» в соответствии с Р 50.2.077-2014.

Идентификационные данные ПО приведены в таблице 1.

Таблица 1 – Идентификационные данные ПО

Идентификационные данные (признаки)	Метрологически значимая часть ПО			
Идентификационное наименование ПО	ac_metrology.dll			
Номер версии (идентификационный номер) ПО	не ниже 12.1.0.0			
Цифровой идентификатор ПО	3E736B7F380863F44CC8E6F7BD211C54			
Алгоритм вычисления цифрового идентификатора	MD5			

Метрологические и технические характеристики Таблица 2 — Состав ИК АИИС КУЭ

	лица 2 — Состав		Состав ИК				рологические теристики ИК	
Номер ИК	Наименование объекта учета	TT	ТН	Счетчик	YCB, Cepsep	Вид элек тро- энер гии	Границы допускаемой основной относительной по-	Границы допускаемой относительной погрешности в рабочих условиях, ±δ) %
1	2	3	4	5	6	7	8	9
1	ПС 110 кВ Мираторг, 1 сш 110 кВ, ввод 110 кВ	ТG145N 600/5 Кл.т. 0,2S Рег. № 30489-09	НАМИ-110 УХЛ1 110000/√3/100/√3 Кл.т. 0,2 Рег. № 60353-15	СЭТ- 4ТМ.03М Кл.т. 0,2S/0,5 Per. № 36697-17	per. № 28716-05, HP DL350G4p	ак- тив- ная	0,6	1,4
2	ПС 110 кВ Мираторг, 2 сш 110 кВ, ввод 110 кВ	ТG145N 600/5 Кл.т. 0,2S Рег. № 30489-09	НАМИ-110 УХЛ1 110000/√3/100/√3 Кл.т. 0,2 Рег. № 60353-15	СЭТ- 4ТМ.03М Кл.т. 0,2S/0,5 Per. № 36697-17	VCB-1 per. № 28716-(ре- ак- тив- ная	0,9	2,3

Продолжение таблицы 2

1	2	3	4	5	6	7	8	9
3	ПС 35 кВ №434 Мира- торг, 1 сш 10 кВ, яч.4, ввод 1	ТЛО-10 М1 АС 400/5 Кл.т. 0,2S Рег. № 25433-11	ЗНОЛП-НТЗ-10 10000/√3/100/√3 Кл.т. 0,5 Рег. № 51676-12	СЭТ- 4ТМ.03М Кл.т. 0,2S/0,5 Рег. № 36697-17	DL380Gen6			
4	ПС 35 кВ №434 Мираторг, 2 сш 10 кВ, яч.10, ввод 2	ТЛО-10 М1АС 400/5 Кл.т. 0,2S Рег. № 25433-11	ЗНОЛП-НТЗ-10 10000/√3/100/√3 Кл.т. 0,5 Рег. № 51676-12	СЭТ- 4ТМ.03М Кл.т. 0,2S/0,5 Рег. № 36697-17	64242-16, HP	ак- тив- ная реак- тив- ная	0,9	1,6 2,5
5	ПС 35 кВ №434 Мираторг, 1 сш 10 кВ, яч.1, ввод 3	ТЛО-10 М1АС 400/5 Кл.т. 0,2S Рег. № 25433-11	ЗНОЛП-НТЗ-10 10000/√3/100/√3 Кл.т. 0,5 Рег. № 51676-12	СЭТ- 4ТМ.03М Кл.т. 0,2S/0,5 Рег. № 36697-17	VCB-3 per. №			

Примечания:

- 1 В качестве характеристик погрешности ИК установлены границы допускаемой относительной погрешности ИК при доверительной вероятности, равной 0,95.
- 2 Характеристики погрешности ИК указаны для измерений активной и реактивной электроэнергии на интервале времени 30 минут.
- 3 Допускается замена ТТ, ТН и счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в таблице 2, при условии, что Предприятие-владелец АИИС КУЭ не претендует на улучшение метрологических характеристик.
- 4 Допускается замена источника точного времени на аналогичный утвержденного типа.
- 5 Допускается замена сервера АИИС КУЭ без изменения используемого ПО (при условии сохранения цифрового идентификатора ПО).
- 6 Допускается замена ПО на аналогичное, с версией не ниже указанной в описании типа средств измерений.
- 7 Замена оформляется техническим актом в установленном на Предприятии-владельце АИИС КУЭ порядке, вносят изменения в эксплуатационные документы. Технический акт хранится совместно с эксплуатационными документами на АИИС КУЭ как их неотъемлемая часть.
- 8 Рег.№ регистрационный номер в Федеральном информационном фонде по обеспечению единства измерений.

Таблица 2 - Основные технические характеристики ИК

Наименование характеристики	Значение
Нормальные условия:	
параметры сети:	
- напряжение, % от Uном	от 98 до 102
- ток, % от Іном	от 100 до 120
- коэффициент мощности	0,9
- частота, Гц	от 49,8 до 50,2
температура окружающей среды, °С	от +21 до +25
Условия эксплуатации:	
параметры сети:	
- напряжение, % от Ином	от 90 до 110
- ток, % от Іном	от 5 до 120
 коэффициент мощности, соѕф 	0,8
- частота, Гц	от 49,8 до 50,2
температура окружающей среды для TT, TH, °C	от -40 до +40
температура окружающей среды в месте расположения счетчиков, °С	от +15 до +30
температура окружающей среды в месте расположения сервера, °C	от +15 до +25
Надежность применяемых в АИИС КУЭ компонентов	
Счетчики СЭТ-4ТМ.03М:	
- среднее время наработки на отказ, ч, не менее	140000
Сервер:	
- коэффициент готовности, не менее	0,99
Глубина хранения информации	
Счетчики СЭТ-4ТМ.03М:	
- тридцатиминутные приращения активной и реактивной	
электроэнергии каждого массива профиля составляет, сутки, не менее	113
Сервер:	
- хранение результатов измерений и информации состояний средств	
измерений, лет, не менее	3,5
Пределы допускаемой погрешности СОЕВ, с	±5

Надежность системных решений:

- резервирование ИВК АИИС КУЭ с помощью источника бесперебойного питания;
- резервирование каналов связи: информация о результатах измерений может передаваться в организации—участники оптового рынка электроэнергии по электронной почте и сотовой связи.

Регистрация событий в журнале событий счетчика:

- параметрирования;
- пропадания напряжения;
- коррекции времени в счетчике;

Защищённость применяемых компонентов:

- -механическая защита от несанкционированного доступа и пломбирование:
- электросчётчика;
- промежуточных клеммников вторичных цепей напряжения;
- испытательной коробки;
- сервера БД;
- защита информации на программном уровне:
- результатов измерений (при передаче, возможность использования цифровой подписи);
- установка пароля на счетчик;
- установка пароля на сервер БД.

Возможность сбора информации:

- о состоянии средств измерений (функция автоматизирована);
- о результатах измерений (функция автоматизирована).

Цикличность:

- измерения приращений электроэнергии на интервалах 3 мин; 30 мин; 1 сут (функция автоматизирована);
 - сбор результатов измерений не реже 1 раза в сут (функция автоматизирована).

Знак утверждения типа

наносится на титульные листы эксплуатационных документов на АИИС КУЭ типографским способом.

Комплектность средства измерений

Комплектность АИИС КУЭ представлена в таблице 4.

Таблица 4 - Комплектность средств измерений

Наименование	Обозначение	Количе-
		ство, шт.
Трансформаторы тока	ТЛО-10	9
Трансформаторы тока	TG145N	6
Трансформаторы напряжения	ЗНОЛП-НТЗ-10	9
Трансформаторы напряжения	НАМИ-110	6
Счетчики электрической энергии многофункциональные	СЭТ-4TM.03М	5
Устройство синхронизации времени	УСВ-3	1
Сервер	HP	1
Программное обеспечение	ПО АльфаЦентр	1
Методика поверки	МИ 201-056-2020	1
Паспорт-формуляр	СККд5.001-ПФ	1

Поверка

осуществляется в соответствии с документом МИ 201-056-2020 «Государственная система обеспечения единства измерений. Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ЗАО «СК Короча» дополнение №5. Методика поверки», утвержденному ФГУП «ВНИИМС» 28.09.2020 г.

Основные средства поверки:

- трансформаторы тока по ГОСТ 8.217-2003;
- трансформаторы напряжения по ГОСТ 8.216-2011
- счетчики СЭТ-4ТМ.03М по методике поверки ИГЛШ.411152.145РЭ1;
- УСВ-3 по методике поверки РТ-Мп-3124-441-2016;
- блоки коррекции времени ЭНКС-2 рег. № 37328-15;

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке АИИС КУЭ.

Сведения о методиках (методах) измерений

метод измерений приведен в документе «Методика измерений электрической энергии и мощности с использованием автоматизированной информационно-измерительной системы коммерческого учета электроэнергии (АИИС КУЭ) ЗАО «СК Короча» дополнение №5, аттестованном ФГУП «ВНИИМС», аттестат аккредитации № RA.RU.311787 от 16.02.2016 г.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ЗАО «СК Короча» дополнение №5

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения

Изготовитель

Общество с ограниченной ответственностью «Мираторг-Энерго» (ООО «Мираторг-Энерго»)

ИНН 3109004440

Адрес: 308036, г. Белгород, ул. Щорса, 45

Юридический адрес: 309070, Белгородская область, Яковлевский район, город Строитель,

Заводская 2-я улица, дом 17, помещение 4

Телефон: (4722) 58-64-00 Web-сайт: www.miratorg.ru

E-mail: miratorgenergo@agrohold.ru

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы» (ФГУП «ВНИИМС»)

Адрес: 119361, г. Москва, ул. Озерная, 46

Телефон: (495) 437-55-77 Факс: (495) 437-56-66 Web-сайт: www.vniims.ru E-mail: office@vniims.ru

Аттестат аккредитации ФГУП «ВНИИМС» по проведению испытаний средств измерений в

целях утверждения типа № 30004-13 от 29.03.2018 г.