Приложение № 4 к сведениям о типах средств измерений, прилагаемым к приказу Федерального агентства по техническому регулированию и метрологии от «2» декабря 2020 г. № 1960

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Терминалы релейной защиты и автоматики многофункциональные для сетей 6-35 кВ ARIS-23хх

Назначение средства измерений

Терминалы релейной защиты и автоматики многофункциональные для сетей 6-35 кВ ARIS-23хх (далее — терминалы) предназначены для измерений параметров сети переменного тока с номинальной частотой 50 Гц, измерений и учета электроэнергии в соответствии с метрологическими требованиями ГОСТ 31819.22-2012 и ГОСТ 31819.23-2012, измерения и регистрации показателей качества электрической энергии (далее — ПКЭ), измерений унифицированных аналоговых сигналов тока и напряжения, выполнения функций релейной защиты и автоматики присоединениями 6-35 кВ.

Описание средства измерений

Принцип действия терминалов основан на аналого-цифровом преобразовании (далее – АЦП) входных сигналов, их обработке и хранении, с возможностью последующей передачи в информационные системы.

Основные функции, обеспечиваемые терминалами, следующие:

- релейная защита и автоматика;
- регистрация аварийных событий;
- измерение и расчет электрических параметров: частоты, напряжения, тока, углов фазовых сдвигов, мощности, сетей с номинальной частотой 50 Гц;
 - регистрация дискретных сигналов о состоянии оборудования;
 - выдача команд управления;
 - измерение унифицированных аналоговых сигналов тока и напряжения;
 - измерение и учет электрической энергии;
 - регистрация параметров качества электрической энергии;
 - оперативная блокировка коммутационных аппаратов;
- обмен данными и командами в цифровых протоколах передачи данных со смежными устройствами и системами;
 - выполнение пользовательских алгоритмов;
 - учет коммутационного ресурса высоковольтных выключателей.

Терминалы применяются в качестве устройств для построения систем релейной защиты и автоматика (РЗиА), автоматизированных систем управления технологическим процессом (АСУ ТП), систем сбора и передачи информации (ССПИ/ТМ), автоматизированная с истема технического учета электроэнергии (АСТУЭ), автоматизированных систем коммерческо го учета электроэнергии (АИИС КУЭ), контроля и регистрации ПКЭ на электрических подстанциях (ПС, РП, ТП), электростанциях, атомных станциях, объектах жилищно-коммунального хозяйства (ЖКХ) и других объектах энергетики.

Терминалы представляют собой модульно-компонуемые устройства, изготавливаемые в едином корпусе промышленного исполнения, разработанном на основе стандарта «Евромеханика».

В зависимости от количества модулей расширения, входящих в состав терминалов, терминалы подразделяются на следующие исполнения:

- ARIS-23x5 обеспечивают возможность установки до пяти модулей расширения;
- ARIS-23x8 обеспечивают возможность установки до восьми модулей расширения.

В зависимости от назначения терминалы включают в свой состав:

- модули процессорные с дублированными портами Ethernet с поддержкой технологии резервирования PRP;
 - модули дискретных выходов;
 - модули дискретных входов/выходов;
 - модули дискретных выходов;
 - модули управления высоковольтным выключателем с функцией реле положения отключено/включено (РПО/РПВ) и контролем тока в цепях управления;
 - модули коммуникационные (обеспечивающие последовательные интерфейсы RS-232, RS-485, Ethernet);
 - модули аналоговых входов переменного тока, напряжения с функцией измерений, учета, ПКЭ (опционально) (М1, М3, М4);
 - модули аналоговых входов переменного тока, напряжения с функцией РЗиА, измерений, учета (опционально) (Р1 – Р9);
 - модули аналоговых входов унифицированных аналоговых сигналов тока, напряжения (модули G1, G2);
 - модуль системы обеспечения единого времени ГЛОНАСС/GPS (интегрирован в процессорный модуль);
 - модуль беспроводной передачи данных GPRS/3G/LTE (интегрирован в процессорный модуль);
 - модули источников питания.

Состав терминала определяется на этапе заказа.

Схема условного обозначения терминалов:

		1	2	3	4	5	6
ARIS	_	23	ab	c.dc.d	-е	-f	-g

где:

1 – обозначение линейки терминалов, где

«23» - код линейки терминалов.

2 – конструктивное исполнение корпуса, где

«а» - исполнение по составу модулей

0 – произвольный состав модулей;

1 .. 9 – фиксированный состав модулей;

«b» -типоразмер корпуса

5 – исполнение на пять модулей (4U);

8 – исполнение на восемь модулей (4U).

3 – перечень модулей в составе терминалов, где

«с» - обозначение модуля;

«d» - номер, определяющий типоразмер, равен 4.

4 – наличие интерфейса человек-машина (ИЧМ), где

«е» - исполнение ИЧМ:

Н0 – встраиваемый ИЧМ;

Н1.х.х – выносной ИЧМ различных исполнений по таблице 1;

поле пустое – отсутствие ИЧМ.

- 5 дополнительный функционал (при наличии нескольких опций перечисляется через точку) где
 - «f» обозначение дополнительного функционала из списка:

M – функция счетчика электроэнергии (активная электрическая энергия класс 0,2S, реактивная электрическая энергия класс 0,5) без функции ПКЭ, только при оснащении модулями Mx;

PM - функция счетчика электроэнергии (активная электрическая энергия класс 0,2S,

реактивная электрическая энергия класс 0,5) без функции ПКЭ, только при оснащении модулями Р5, Р8;

PV – функция измерения параметров переменного напряжения с метрологическими характеристиками в соответствии с таблицей 10;

 $QS - \phi$ ункция прибора измерений ПКЭ (класс S по ГОСТ 30804.4.30-2013), опция счетчика электроэнергии включена, только при оснащении модулями M1;

QA – функция прибора измерений ПКЭ (класс A по ГОСТ 30804.4.30-2013), опция счетчика электроэнергии включена, только при оснащении модулями М3, М4.

6 – тип защиты, где

«д» - обозначение функций РЗиА:

BЛ – релейная защита и автоматика линии 6 - 35 kB;

ВВ – релейная защита и автоматика ввода 6 – 35 кВ;

СВ – релейная защита и автоматика секционного выключателя 6 – 35 кВ;

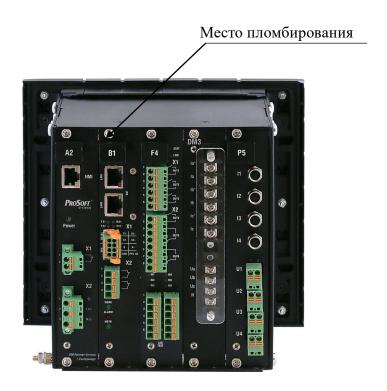
TH – релейная защита и автоматика трансформатора напряжения $6-35~\mathrm{kB}$.

Таблица 1 – Список модулей, их обозначений для ARIS-23xx

Наименование модуля	Обозначение
Источник питания 24 B DC	A1.4
Источник питания 220 В AC/DC	A2.4
Модуль ЦП, 2xEthernet TX, 2xRS-485, PPS	B1.4
Модуль ЦП, 2xEthernet FX, 2xRS-485, PPS	B3.4
Модуль ЦП, 2xEthernet TX, 2xRS-485, PPS, GPS/Глонасс, GSM/GPRS, 2xSIM	B5.4
Модуль ЦП, 2xEthernet FX, 2xRS-485, PPS, GPS/Глонасс, GSM/GPRS, 2xSIM	B6.4
Модуль интерфейсов RS-485, 10 портов	E1.4
Модуль интерфейсов RS-232, 3 порта	E2.4
Модуль интерфейсов Ethernet, 4 порта 100Base-FX, 2 порта 100Base-TX	E3.4
Модуль сетевого шлюза Ethernet, 4 порта 100Base-FX, 4 порта 100Base-TX	E4.4
Модуль дискретных выходов 220 В, 5 А АС, 12 выходов	C1.4
Модуль управления высоковольтным выключателем	C3.4
Модуль дискретных входов 24 B DC, 20 входов	D1.4
Модуль дискретных входов 220 В АС/DC, 16 входов	D2.4
Модуль дискретных входов 220 В АС/DС с режекцией, 16 входов	D3.4
Модуль дискретных входов-выходов 24 B DC, 12 входов, 4 выхода	F1.4
Модуль дискретных входов-выходов 220 В АС/DC, 12 входов, 4 выхода	F2.4
Модуль дискретных входов-выходов 220 В АС/DC, 6 входов, 6 выходов, режекция	F3.4
Модуль дискретных входов-выходов 220 В АС/DC, 6 входов, 6 выходов	F4.4
Модуль аналоговых входов от 0 до 5 мA; от -5 до 5 мA; от 4 до 20 мA; от -20 до 20 мA; 12 каналов	G1.4
Модуль аналоговых входов от 0 до 1 B; от 0 до 5 B; от 0 до 10 B; от -10 до 10 B; 12 каналов	G2.4
Модуль аналоговых входов переменного тока, напряжения с функцией измерений, учета, ПКЭ класс S (опционально). 3 тока ($I_{\text{ном}}$ =1/5 A), 3 напряжения ($U_{\text{ном}}$ =57,7/220 B; $U_{\text{МФном}}$ =100/380 B). ПКЭ класс S	M1.4
Модуль аналоговых входов переменного тока, напряжения с функцией измерений, учета, ПКЭ класс A (опционально). 3 тока ($I_{\text{ном}}$ =1/5 A), 3 напряжения ($U_{\text{ном}}$ =57,7/220 B; $U_{\text{МФном}}$ =100/380 B). ПКЭ класс A	M3.4
Модуль аналоговых входов переменного тока, напряжения с функцией измерений, учета, ПКЭ класс А (опционально). 4 тока ($I_{\text{ном}}$ =1/5 A), 4 напряжения ($U_{\text{ном}}$ =57,7/220 B; $U_{\text{МФном}}$ =100/380 B). ПКЭ класс А	M4.4

Наименование модуля	Обозначение
---------------------	-------------

Модуль аналоговых входов переменного тока, напряжения с функцией РЗиА.	P1.4
4 тока (Іном = 5 А, 4-й канал тока - чувствительный 1А), 4 напряжения (57,7/100	
B)	
Модуль аналоговых входов переменного тока, напряжения с функцией РЗиА.	P2.4
4 тока ($I_{\text{ном}} = 1 \text{ A}$, 4-й канал тока - чувствительный 1A), 4 напряжения (57,7/100 B)	
Модуль аналоговых входов переменного тока, напряжения с функцией РЗиА.	P3.4
4 тока ($I_{\text{ном}} = 5$ A), 4 напряжения ($U_{\text{ном}} = 57.7$ В; $U_{\text{МФном}} = 100$ В)	
Модуль аналоговых входов переменного тока, напряжения с функцией РЗиА.	P4.4
4 тока ($I_{\text{ном}} = 1$ A), 4 напряжения ($U_{\text{ном}} = 57.7$ В; $U_{\text{МФном}} = 100$ В)	
Модуль аналоговых входов переменного тока, напряжения с функцией РЗиА,	P5.4
измерений, учета (опционально).	
4 тока (внешние катушки Роговского), 4 напряжения (U _{ном} =57,7 В;	
$U_{M\Phi_{HOM}}=100 \text{ B}$	
Модуль аналоговых входов переменного тока, напряжения с функцией РЗиА,	P8.4
измерений, учета (опционально).	
4 тока (внешние катушки Роговского), 4 напряжения (U _{ном} =100 В подключение к	
емкостному делителю)	
Модуль аналоговых входов переменного напряжения с функцией РЗиА.	P9.4
4 напряжения (Uном=57,7 B; UМФном=100 B)	
Встроенный ИЧМ для исполнения ARIS-23x5	H0.5
Встроенный ИЧМ для исполнения ARIS-23x8	H0.8
Выносной ИЧМ. 4 цифровых ключа. 7 светодиодов. Питание от 24 В DC	H1.5.1
Выносной ИЧМ. 4 цифровых ключа. 7 светодиодов. Питание от 220 В АС/DС	H1.5.2
Выносной ИЧМ. 6 цифровых ключей. 18 светодиодов. Питание от 24 В DC	H1.8.1
Выносной ИЧМ. 6 цифровых ключей. 18 светодиодов. Питание от 220 В АС/DС	H1.8.2


Общий вид терминалов с указанием места пломбирования от несанкционированного доступа представлен на рисунке 1.

а) исполнение ARIS-23x8

б) исполнение ARIS-23x5

Рисунок 1 — Общий вид терминалов с указанием места пломбирования от несанкционированного доступа

Программное обеспечение

В состав ПО терминалов входят:

- встроенное системное программное обеспечение (далее СПО);
- прикладное ПО программа-конфигуратор, Web-интерфейс.

Встроенное СПО делится на метрологически значимую и метрологически незначимую части. Метрологически незначимая часть СПО может допускать изменения и дополнения, не влияющие на идентификационные данные метрологически значимой части СПО.

Уровень защиты встроенного СПО от непреднамеренных и преднамеренных изменений – «средний» в соответствии с рекомендациями Р 50.2.077-2014.

Прикладное ПО не является метрологически значимым и предназначено для конфигурирования терминалов и просмотра текущих данных, получаемых и обрабатываемых терминалами.

Идентификационные данные метрологически значимой части ПО терминалов приведены в таблице 2.

Таблица 2 – Идентификационные данные ПО терминалов

	T .				
Идентификаци- онные данные (признаки)	Встроенное СПО ARIS-23xx	Встроенное ПО модулей М1	ачение Встроенное ПО модулей М3, М4	Встроенное ПО модулей G1, G2	Встроенное ПО модулей Р5, Р8
Идентификаци- онное наименование ПО	libecom.so	libq_s.a	libq_a.a	libai_metrology_ part.a	libq_Px.a
Номер версии (идентификаци- онный номер) ПО	не ниже 1.9	не ниже 1.9	не ниже 1.9	не ниже 1.9	не ниже 1.9
Цифровой	756a3d3893	98fd608936	6dc6e5f3af	69725cb713	f936f6688b7
идентификатор	9805965e44	e377cdf555	15d7644461	b357b6a4a4	0545f3c1822
ПО	670905fc93d5	67fbae4a91a9	40e303ae4ef0	6660e43ebacc	f2c815a526

Метрологические и технические характеристики

Основные метрологические и технические характеристики терминалов приведены в таблицах 3-21.

Номинальные среднеквадратические значения переменного фазного напряжения: $U_{\text{ном}} = 57.7/220 \text{ B}.$

Номинальные среднеквадратические значения переменного междуфазного напряжения: $U_{\text{М}\Phi_{\text{H}\text{OM}}} = 100/380 \; \text{B}.$

Номинальные среднеквадратические значения силы переменного тока $I_{\text{ном}}=1/5$ А. Базовый ток для модулей Р5, Р8 (опция РМ) базовый ток $I_6=100$ А, максимальный ток $I_{\text{макс}}=2000$ А.

Номинальное значение частоты переменного тока $f = 50 \, \Gamma$ ц.

Таблица 3 – Метрологические характеристики собственных часов

Наименование характеристики	Значение
Допускаемая поправка часов (с коррекцией по источнику точного времени ГЛОНАСС/GPS или NTP с использованием PPS-сигнала), мс	±1
Допускаемая поправка часов (с коррекцией по источнику точного времени PTP), мкс	±100
Допускаемый ход часов (без коррекции от источника точного времени), с/сут	±1

Таблица 4 — Метрологические характеристики при измерении унифицированных сигналов с помощью модулей G1, G2

Наименование	Диапазон	Пределы допускаемой	Средний температурный
	измерений	погрешности приведенной к	коэффициент изменения
характеристики		диапазону измерений, %	погрешности, %/°С
II a ram gava avvvva	от 0 до +1	±0,5	
Напряжение	от 0 до +5	$\pm 0,2$	±0,005
постоянного	от 0 до +10	$\pm 0,1$	±0,003
тока, В	от -10 до +10	$\pm 0,1$	

Наименование	Диапазон	Пределы допускаемой	Средний температурный	
	измерений	погрешности, приведенной к	коэффициент изменения	
характеристики		диапазону измерений, %	погрешности, %/°С	
Carro	от 0 до +5	±0,2		
Сила	от -5 до +5	$\pm 0,2$	10.005	
ПОСТОЯННОГО	от +4 до +20	$\pm 0,1$	$\pm 0,\!005$	
тока, мА	от -20 до +20	$\pm 0,1$		

Таблица 5 — Метрологические характеристики при измерении параметров переменного тока по классу S (по Γ OCT 30804.4.30-2013) с помощью модулей M1

KJIACCY S (110 1 OC 1 30804.4.30-20	713) с помощью мод	(y)ICH IVII	
		Пределы допускаемой	Средний
		погрешности:	температурный
Наименование характеристики	Диапазон	абсолютной (Δ);	коэффициент
таименование характеристики	измерений	относительной (δ) ;	изменения
		приведенной к	погрешности,
		номинальному значению (ү)	%/°C
Частота переменного тока f , Γ ц	от 42,5 до 57,5	±0,01 Гц (Δ)	-
Среднеквадратическое значение фазного напряжения переменного тока U_A , U_B , U_C , B	от $0,05 \cdot U_{ ext{ном}}$ до $1,5 \cdot U_{ ext{ном}}$	±0,2 % (γ)	±0,01
Среднее среднеквадратических значений фазного напряжения переменного тока $U_{\Phi cp}$, В	от $0,05 \cdot U_{ ext{ном}}$ до $1,5 \cdot U_{ ext{ном}}$	±0,35 % (γ)	±0,01
Среднеквадратическое значение фазных напряжений переменного тока прямой, обратной и нулевой последовательности $U_{1\Phi}$, $U_{2\Phi}$, $U_{0\Phi}$, B	от $0.05 \cdot U_{ ext{ iny Hom}}$ до $1.5 \cdot U_{ ext{ iny Hom}}$	±0,2 % (γ)	±0,01
Среднеквадратическое значение междуфазного напряжения переменного тока $U_{AB}, U_{BC}, U_{CA}, B$	от $0.05 \cdot U_{\mathrm{М\Phi Hom}}$ до $1.5 \cdot U_{\mathrm{M\Phi Hom}}$	±0,2 % (γ)	±0,01
Среднее среднеквадратических значений междуфазного напряжения переменного тока $U_{\text{МФср}}$, В	от $0.05 \cdot U_{\mathrm{M}\Phi_{\mathrm{HOM}}}$ до $1.5 \cdot U_{\mathrm{M}\Phi_{\mathrm{HOM}}}$	±0,35 % (γ)	±0,01
Среднеквадратическое значение междуфазных напряжений переменного тока прямой, обратной и нулевой последовательности $U_{1\text{M}\Phi}$, $U_{2\text{M}\Phi}$, $U_{0\text{M}\Phi}$, B	от $0.05 \cdot U_{ ext{M}\Phi_{ ext{HOM}}}$ до $1.5 \cdot U_{ ext{M}\Phi_{ ext{HOM}}}$	±0,2 % (γ)	±0,01

продолжение таолицы з		Прополь понумую от о	Споличий	
		Пределы допускаемой	Средний	
Наименование	Пууатуарауу	погрешности: абсолютной	температурный	
	Диапазон	(Δ) ; относительной (δ) ;	коэффициент	
характеристики	измерений	приведенной к	изменения	
		номинальному	погрешности,	
C		значению (ү);	%/°C	
Среднеквадратическое значение силы	от 0.01.1 до			
переменного тока I_A , I_B , I_C ,	от $0{,}01 \cdot I_{\text{ном}}$ до $1{,}5 \cdot I_{\text{ном}}$	$\pm 0.2 \% (\gamma)$	$\pm 0,01$	
переменного тока <i>I</i> _A , <i>I</i> _B , <i>I</i> _C ,	$1, \mathcal{J}^{T}_{\text{HOM}}$			
Среднее				
среднес	от $0,\!01\!\cdot\! I_{\scriptscriptstyle{\mathrm{HOM}}}$ до			
значений силы	$1.5 \cdot I_{\text{HOM}}$	$\pm 0.35 \% (\gamma)$	± 0.01	
переменного тока $I_{\Phi cp}$, А	$1, \mathcal{I}_{\text{HOM}}$			
Среднеквадратическое				
значение силы				
переменного тока прямой,	от $0,\!01$ $\cdot I_{\scriptscriptstyle \mathrm{HOM}}$ до			
обратной и нулевой	$1.5 \cdot I_{\text{HOM}}$	$\pm 0.2\% (\gamma)$	$\pm 0,01$	
последовательности I_1 , I_2 ,	1,0 THOM			
I_0 , A				
		±0,4 % (δ)		
		для $0.01 \cdot I_{\text{ном}} \leq I < 0.05 \cdot I_{\text{ном}}$		
		$0.8 < \cos \varphi \le 1$		
		±0,2 % (δ)		
		для $0.05 \cdot I_{\text{ном}} \le I \le 1.5 \cdot I_{\text{ном}}$		
	om 0.05 . II — To	$0.8 < \cos \varphi \le 1$		
Активная фазная и	от $0.05 \cdot U_{ ext{hom}}$ до $1.5 \cdot U_{ ext{hom}}$	±0,5 % (δ)		
трехфазная электрическая	от $0.01 \cdot I_{\text{ном}}$ до	$\pm 0.3\%$ (0) для $0.02 \cdot I_{\text{Hom}} \leq I < 0.1 \cdot I_{\text{Hom}}$	±0,02	
прехфазная электрическая мощность P_A , P_B , P_C , P , P_B	$1,5 \cdot I_{\text{ном}}$ до	$0.5 \le \cos \varphi \le 0.8$	±0,02	
мощность 1 д, 1 в, 1 с, 1, Вт	$0.25 \le \cos \varphi \le 1$	$0.5 \le \cos \psi \le 0.8$		
	$0,23 \ge 008 \psi \ge 1$	$\pm 0.3\% (\delta)$		
		для $0,1 \cdot I_{\text{HOM}} \le I \le 1,5 \cdot I_{\text{HOM}}$		
		$0.5 \le \cos \varphi \le 0.8$		
		±0,5 % (δ)		
		для $0,1 \cdot I_{\text{HOM}} \leq I \leq 1,5 \cdot I_{\text{HOM}}$		
		$0,25 \le \cos \varphi < 0,5$		

продолжение таблицы 5	1		
Наименование характеристики	Диапазон измерений	Пределы допускаемой погрешности: абсолютной (Δ); относительной (δ); приведенной к номинальному значению (γ);	Средний температурный коэффициент изменения погрешности, %/°C
Реактивная фазная и трехфазная электрическая мощность Q_A , Q_B , Q_C , Q , вар	от $0.05 \cdot U_{\text{ном}}$ до $1.5 \cdot U_{\text{ном}}$ от $0.01 \cdot I_{\text{ном}}$ до $1.5 \cdot I_{\text{ном}}$ до $0.25 \leq \sin \phi \leq 1$	$\pm 0.75\% (\delta)$ для $0.02 \cdot I_{\text{HOM}} \leq I < 0.05 \cdot I_{\text{HOM}}$ $0.8 < \sin \varphi \leq 1$ $\pm 0.5\% (\delta)$ для $0.05 \cdot I_{\text{HOM}} \leq I \leq 1.5 \cdot I_{\text{HOM}}$ $0.8 < \sin \varphi \leq 1$ $\pm 0.75\% (\delta)$ для $0.05 \cdot I_{\text{HOM}} \leq I < 0.1 \cdot I_{\text{HOM}}$ $0.5 \leq \sin \varphi \leq 0.8$ $\pm 0.5\% (\delta)$ для $0.1 \cdot I_{\text{HOM}} \leq I \leq 1.5 \cdot I_{\text{HOM}}$ $0.5 \leq \sin \varphi \leq 0.8$ $\pm 0.75\% (\delta)$ для $0.1 \cdot I_{\text{HOM}} \leq I \leq 1.5 \cdot I_{\text{HOM}}$ $0.5 \leq \sin \varphi \leq 0.8$ $\pm 0.75\% (\delta)$ для $0.1 \cdot I_{\text{HOM}} \leq I \leq 1.5 \cdot I_{\text{HOM}}$ $0.25 \leq \sin \varphi < 0.5$	±0,02
Полная фазная и трехфазная электрическая мощность S_A , S_B , S_C , S , $B \cdot A$	от $0,05 \cdot U_{ ext{hom}}$ до $1,5 \cdot U_{ ext{hom}}$ от $0,01 \cdot I_{ ext{hom}}$ до $1,5 \cdot I_{ ext{hom}}$	$\pm 0.75 \% (\delta)$ для $0.01 \cdot I_{\text{Hom}} \leq I < 0.05 \cdot I_{\text{Hom}}$ ± 0.02 $\pm 0.5 \% (\delta)$ для $0.05 \cdot I_{\text{Hom}} \leq I \leq 1.5 \cdot I_{\text{Hom}}$	
Угол фазового сдвига между током и напряжением основной гармоники $\varphi_{\text{UIA}(1)}$, $\varphi_{\text{UIB}(1)}$, $\varphi_{\text{UIC}(1)}$, °	от -180 до +180	±0,2° (Δ)	-
Коэффициент мощности фазный $cos \varphi_A$, $cos \varphi_B$, $cos \varphi_C$	от -1,0 до +1,0	±0,01 (Δ)	-

Таблица 6 — Метрологические характеристики при измерении ПКЭ по классу S (по ГОСТ 30804.4.30-2013) с помощью модулей М1 (опция QS)

Наименование характеристики	Диапазон измерений	Пределы допускаемой погрешности: абсолютной (Δ), относительной (δ)
Отклонение частоты Δf_{10} , Γ ц	от -7,5 до +7,5	±0,01 Гц (Δ)
Положительное отклонение фазного напряжения переменного тока $\delta U_{\rm Ay(+)}$, $\delta U_{\rm By(+)}$, $\delta U_{\rm Cy(+)}$, %	от 0 до 20	±0,2 % (Δ)

Наименование характеристики Пределыя допускаемой погрепциости: абсолютной (Δ), относительной (Δ) от	продолжение таблицы б		
папряжения переменного тока $\delta U_{Ay(\cdot)}, \delta U_{By(\cdot)},$ от 0 до 20 ±0,2 % (Δ) $\delta U_{Cy(\cdot)}, \delta U_{Cy(\cdot)}, \delta$	Наименование характеристики		погрешности: абсолютной (Δ),
Установившесся отклонение фазных напряжений переменного тока $\delta U_{\rm Ay}$, $\delta U_{\rm By}$, $\delta U_{\rm Cy}$, % от -20 до +20 ± 0.2 % (Δ) $\delta U_{\rm Cy}$, % Коэффициент искажения синусоидальности кривой напряжения K_U (при $K_U \le 1.0$), % от 1 до 45 ± 5 % (δ) Коэффициент искажения синусоидальности кривой напряжения K_U (при $K_U \le 1.0$), % от 0 до 1 ± 0.3 % (Δ) Коэффициент n -й гармонической составляющей напряжения $K_{\rm Usg.n}$ от 1 до 30 ± 5 % (δ) Коэффициент n -й гармонической составляющей напряжения $K_{\rm Usg.n}$ от 0 до 1 ± 0.3 % (Δ) Коэффициент m -й интергармонической составляющей напряжения $K_{\rm Usg.n}$ от 0 до 1 ± 0.3 % (Δ) Коэффициент m -й интергармонической составляющей напряжения $K_{\rm Usg.n}$ от 0 до 1 ± 0.3 % (Δ) Коэффициент m -й интергармонической составляющей напряжения $K_{\rm Usg.n}$ от 0 до 1 ± 0.3 % (Δ) Коэффициент m -й интергармонической составляющей (при $K_1 \ge 1.0$), % от 1 до 45 ± 5 % (δ) Коэффициент некажения синусоидальности кривой тока K_1 (при $K_1 \ge 1.0$), % от 1 до 45 ± 5 % (δ) Коэффициент π -й гармонической составляющей силы переменного тока $K_{\rm Isg.n}$ от 0 до 1 ± 0.3 % (Δ) Коэффициент π -й гармонической составляющей π -й гармонической	напряжения переменного тока $\delta U_{{ m Ay}(\text{-})},\delta U_{{ m By}(\text{-})},$	от 0 до 20	±0,2 % (Δ)
кривой напряжения K_U (при $K_U \le 1.0$), % (8) (7) (при $K_U \le 1.0$), % (8) (8) (10 до 1 до 1 до 30 до 1 до 30 (при $K_U \le 1.0$), % (8) (8) (при $K_U \le 1.0$), % (8) (при $K_U \le 1.0$), г.де $n = 240$, % (8) (при $K_U \le 1.0$), г.де $n = 240$, % (8) (при $K_U \le 1.0$), г.де $n = 240$, % (8) (при $K_U \le 1.0$), г.де $n = 240$, % (8) (при $K_U \le 1.0$), г.де $n = 240$, % (8) (при $K_U \le 1.0$), г.де $n = 240$, % (8) (при $K_U \le 1.0$), г.де $n = 240$, % (8) (при $K_U \le 1.0$), г.де $n = 240$, % (8) (10 до 1 до 1 до 30 до 1 до 30 до 1 до 30 до 1 до 30 до	Установившееся отклонение фазных напряжений переменного тока δU_{Ay} , δU_{By} ,	от -20 до +20	$\pm 0.2~\%~(\Delta)$
Коэффициент искажения синусоидальности кривой напряжения K_U (при $K_U < 1,0$), % (кривой напряжения $K_{ m U}$	от 1 до 45	±5 % (δ)
Коэффициент n -й гармонической составляющей напряжения $K_{\text{Lisg,n}}$ от 1 до 30 $\pm 5\%$ (δ) $\frac{1}{10000000000000000000000000000000000$	Коэффициент искажения синусоидальности кривой напряжения $K_{\rm U}$	от 0 до 1	±0,3 % (Δ)
Коэффициент n -й гармонической составляющей напряжения $K_{\text{Usg,n}}$ от 0 до 1 $\pm 0,3$ % (Δ) (при $K_{\text{Usg,m}} < 1,0$), где $n = 240$, % ± 5 % (δ) (при $K_{\text{Usg,m}} \ge 1,0$), где $m = 239$, % ± 5 % (δ) (при $K_{\text{Usg,m}} \ge 1,0$), где $m = 239$, % ± 5 % (δ) (при $K_{\text{Usg,m}} \ge 1,0$), где $m = 239$, % ± 5 % (δ) (при $K_{\text{Usg,m}} < 1,0$), где $m = 239$, % ± 5 % (δ) (при $K_{\text{Usg,m}} < 1,0$), где $m = 239$, % ± 5 % (δ) (при $K_{\text{Usg,m}} < 1,0$), где $m = 239$, % ± 5 % (δ) (при $K_{\text{Usg,m}} < 1,0$), где $m = 239$, % ± 5 % (δ) (при $K_{\text{Usg,m}} < 1,0$), где $m = 239$, % ± 5 % (δ) (при $K_{\text{Usg,m}} < 1,0$), где $m = 239$, % ± 5 % (δ) (при $K_{\text{Usg,m}} < 1,0$), где $m = 239$, % ± 5 % (δ) (δ) $\pm 0,3$ % (Δ) (δ) (при $K_{\text{Usg,m}} < 1,0$), δ % δ (δ)	Коэффициент n -й гармонической составляющей напряжения $K_{\mathrm{Usg,n}}$	от 1 до 30	±5 % (δ)
Коэффициент m -й интергармонической составляющей напряжения $K_{\text{Uisg,m}}$ от 1 до 30 $\pm 5\%$ (δ) (при $K_{\text{Uisg,m}} \geq 1,0$), где $m = 239$, % Коэффициент m -й интергармонической составляющей напряжения $K_{\text{Uisg,m}}$ от 0 до 1 $\pm 0,3\%$ (Δ) (при $K_{\text{Uisg,m}} < 1,0$), где $m = 239$, % Коэффициент искажения синусоидальности кривой тока K_1 (при $K_1 \geq 1,0$), % от 1 до 45 $\pm 5\%$ (δ) Коэффициент искажения синусоидальности кривой тока K_1 (при $K_1 < 1,0$), % от 0 до 1 $\pm 0,3\%$ (Δ) Коэффициент n -й гармонической составляющей силы переменного тока $K_{\text{Isg,n}}$ от 1 до 30 $\pm 5\%$ (δ) где $n = 240$, % Коэффициент n -й гармонической составляющей силы переменного тока $K_{\text{Isg,n}}$ от 0 до 1 $\pm 0,3\%$ (Δ) (Δ) (при $K_{\text{Isg,n}} < 1,0$), где $n = 240$, % Δ 0 го 0 до 1 Δ 1 го 0 до 1 Δ 2 го 0 до 1 Δ 3 го 0 до 1 Δ 4 го 0 до 1 Δ 5 го 0 до 1 Δ 5 го 0 до 1 Δ 6 го 0 до 1 Δ 6 го 0 до 1 Δ 7 го 0 до 2 го 2 го 0 до 2 го 2 го 0 до 2 го 2	Коэффициент n -й гармонической составляющей напряжения $K_{\mathrm{Usg,n}}$	от 0 до 1	±0,3 % (Δ)
Коэффициент m -й интергармонической составляющей напряжения $K_{\text{Uisg,m}}$ от 0 до 1 $\pm 0,3\%$ (Δ) (при $K_{\text{Uisg,m}} < 1,0$), где $m = 239$, % от 1 до 45 $\pm 5\%$ (δ) Коэффициент искажения синусоидальности кривой тока K_1 (при $K_1 \ge 1,0$), % от 0 до 1 $\pm 0,3\%$ (Δ) Коэффициент искажения синусоидальности кривой тока K_1 (при $K_1 < 1,0$), % от 0 до 1 $\pm 0,3\%$ (Δ) Коэффициент n -й гармонической составляющей силы переменного тока $K_{\text{Isg,n}}$ порядка (при $K_{\text{Isg,n}} \ge 1,0$), где $n = 240$, % от 1 до 30 $\pm 5\%$ (δ) коэффициент n -й гармонической составляющей силы переменного тока $K_{\text{Isg,n}}$ от 0 до 1 $\pm 0,3\%$ (Δ) (при $K_{\text{Isg,n}} < 1,0$), где $n = 240$, % от 0 до 1 $\pm 0,3\%$ (Δ) (при $K_{\text{Isg,n}} < 1,0$), где $n = 240$, % от 0 до 20 $\pm 0,2\%$ (Δ) Коэффициент несимметрии напряжений по обратной последовательности K_{2U} , % от 0 до 20 $\pm 0,2\%$ (Δ) Коэффициент несимметрии напряжений по нулевой последовательности K_{OU} , % $K_{\text{Оэффициент}}$ неровала (прерывания) напряжения переменного тока $t_{\text{пров}}$, с $t_{\text{Пительность}}$ переменного тока $t_{\text{пров}}$, с $t_{\text{Пительность}}$ переменного тока $t_{\text{пров}}$, с $t_{\text{Пительность}}$ переменного перенапряжения $t_{\text{перь}}$ с $t_{\text{Пительность}}$ переменного перенапряжения $t_{\text{Пительность}}$ переменного перенапряжения $t_{\text{Пительность}}$ переменного перенапряжения $t_{\text{Пительность}}$ переменного перенапряжения $t_{\text{Пительность}}$ от 0,01 до 30 $t_{\text{Пительность}}$ неровенного перенапряжения $t_{\text{Пительность}}$ переменного перенапряжения $t_{\text{Пительность}}$ от 0,01 до 30 $t_{\text{Пительность}}$	Коэффициент m -й интергармонической составляющей напряжения $K_{\text{Uisg,m}}$	от 1 до 30	±5 % (δ)
Коэффициент искажения синусоидальности кривой тока $K_{\rm I}$ (при $K_{\rm I} \geq 1,0$), % Коэффициент искажения синусоидальности кривой тока $K_{\rm I}$ (при $K_{\rm I} < 1,0$), % Коэффициент n -й гармонической составляющей силы переменного тока $K_{\rm Isg,n}$ порядка (при $K_{\rm Isg,n} \geq 1,0$), где $n=2\dots 40$, % Коэффициент n -й гармонической составляющей силы переменного тока $K_{\rm Isg,n}$ от 0 до 1 коэффициент n -й гармонической составляющей силы переменного тока $K_{\rm Isg,n}$ от 0 до 1 коэффициент n -й гармонической составляющей силы переменного тока $K_{\rm Isg,n}$ от 0 до 1 коэффициент несимметрии напряжений по обратной последовательности $K_{\rm 2U}$, % коэффициент несимметрии напряжений по нулевой последовательности $K_{\rm 0U}$, % Длительность провала (прерывания) напряжения переменного тока $t_{\rm пров}$, с Длительность перенапряжения $t_{\rm пер}$, с Коэффициент временного перенапряжения $t_{\rm nep}$, с Коэфотичент временного перенапряжения $t_{\rm nep}$, отн.ед.	Коэффициент m -й интергармонической составляющей напряжения $K_{\text{Uisg,m}}$	от 0 до 1	±0,3 % (Δ)
Коэффициент искажения синусоидальности кривой тока $K_{\rm I}$ (при $K_{\rm I}<1,0$), % Коэффициент n -й гармонической составляющей силы переменного тока $K_{\rm Isg,n}$ порядка (при $K_{\rm Isg,n}\geq 1,0$), где $n=240$, % Коэффициент n -й гармонической составляющей силы переменного тока $K_{\rm Isg,n}$ от 0 до 1 $\pm 0,3$ % (Δ) Коэффициент n -й гармонической составляющей силы переменного тока $K_{\rm Isg,n}$ от 0 до 1 $\pm 0,3$ % (Δ) Коэффициент несимметрии напряжений по обратной последовательности $K_{\rm 2U}$, % Коэффициент несимметрии напряжений по нулевой последовательности $K_{\rm 0U}$, % Длительность провала (прерывания) напряжения переменного тока $t_{\rm пров}$, с Длительность перенапряжения $t_{\rm nep}$, с Коэффициент временного перенапряжения $t_{\rm nep}$, с Коэффициент временного перенапряжения $t_{\rm nep}$, с Коэффициент временного перенапряжения $t_{\rm nep}$, с Тот 0,02 до 60 $t=0,02$ с (Δ) Коэффициент временного перенапряжения $t=0,02$ с (Δ)	Коэффициент искажения синусоидальности	от 1 до 45	±5 % (δ)
Коэффициент n -й гармонической составляющей силы переменного тока $K_{\rm Isg,n}$ порядка (при $K_{\rm Isg,n} \geq 1,0$), где $n=240$, % Коэффициент n -й гармонической составляющей силы переменного тока $K_{\rm Isg,n}$ от 0 до 1 $\pm 0,3$ % (Δ) (при $K_{\rm Isg,n} < 1,0$), где $n=240$, % Коэффициент несимметрии напряжений по обратной последовательности $K_{\rm 2U}$, % Коэффициент несимметрии напряжений по нулевой последовательности $K_{\rm 0U}$, % Длительность провала (прерывания) напряжения переменного тока $t_{\rm пров}$, с от $0,02$ до 60 $\pm 0,02$ с (Δ) $\pm 0,02$ с (Δ) Коэффициент временного перенапряжения $t_{\rm nep}$, с от $0,02$ до 60 $\pm 0,02$ с (Δ) $\pm 0,02$ с (Δ) Коэффициент временного перенапряжения $t_{\rm nep}$, с от $0,01$ до 30 ± 1 % (δ)	Коэффициент искажения синусоидальности	от 0 до 1	±0,3 % (Δ)
Коэффициент n -й гармонической составляющей силы переменного тока $K_{\mathrm{Isg,n}}$ от 0 до 1 $\pm 0.3\%$ (Δ) (при $K_{\mathrm{Isg,n}} < 1.0$), где $n = 240,\%$ от 0 до 20 $\pm 0.2\%$ (Δ) Коэффициент несимметрии напряжений по обратной последовательности $K_{2\mathrm{U}},\%$ от 0 до 20 $\pm 0.2\%$ (Δ) Коэффициент несимметрии напряжений по нулевой последовательности $K_{0\mathrm{U}},\%$ от 0 до 20 $\pm 0.2\%$ (Δ) $\pm 0.2\%$ (Δ) $\pm 0.2\%$ (Δ) $\pm 0.02\%$ (Δ) Коэффициент временного перенапряжения $t_{\mathrm{пер}}, \mathrm{c}$ от 0,02 до 60 $\pm 0.02\%$ (Δ)	Коэффициент n -й гармонической составляющей силы переменного тока $K_{\text{Isg,n}}$ порядка (при $K_{\text{Isg,n}} \ge 1,0$),	от 1 до 30	±5 % (δ)
Коэффициент несимметрии напряжений по обратной последовательности $K_{2\mathrm{U}}$, % от 0 до 20 $\pm 0,2$ % (Δ) Коэффициент несимметрии напряжений по нулевой последовательности $K_{0\mathrm{U}}$, % от 0 до 20 $\pm 0,2$ % (Δ) $\pm 0,02$ с (Δ)	Коэффициент n -й гармонической составляющей силы переменного тока $K_{\text{Isg,n}}$	от 0 до 1	±0,3 % (Δ)
Коэффициент несимметрии напряжений по нулевой последовательности $K_{0\mathrm{U}}$, % $\pm 0,2$ % (Δ) $\pm 0,02$ с (Δ	Коэффициент несимметрии напряжений по	от 0 до 20	±0,2 % (Δ)
Длительность провала (прерывания) иппряжения переменного тока $t_{\text{пров}}$, с от 0,02 до 60 \pm 0,02 с (Δ) \pm 0,03 ффициент временного перенапряжения $K_{\text{пер}}$, отн.ед. \pm 1 % (δ)	Коэффициент несимметрии напряжений по	от 0 до 20	±0,2 % (Δ)
Длительность перенапряжения $t_{\text{пер}}$, с от 0,02 до 60 \pm 0,02 с (Δ) Коэффициент временного перенапряжения $K_{\text{пер}}$, отн.ед. от 0,01 до 30 \pm 1 % (δ)	Длительность провала (прерывания)	от 0,02 до 60	±0,02 c (Δ)
Коэффициент временного перенапряжения $K_{\text{пер}}$, отн.ед. от 0,01 до 30 $\pm 1~\%$ (δ)	1 1	от 0,02 до 60	±0,02 c (Δ)
·		от 0,01 до 30	±1 % (δ)
	-	от 10 до 95	±1 % (δ)

Таблица 7 — Метрологические характеристики при измерении параметров переменного тока по классу A (по ГОСТ 30804.4.30-2013) с помощью модулей M3, M4

Наименование характеристики	Диапазон измерений	Пределы допускаемой погрешности: абсолютной (Δ), относительной (γ) приведенной (γ)	Средний температурный коэффициент изменения погрешности, %/°С
Частота переменного тока f , Γ ц	от 42,5 до 57,5	±0,01 Γιι (Δ)	-
Среднеквадратическое значение фазного напряжения переменного тока U_A , U_B , U_C , B	от $0,01 \cdot U_{\text{ном}}$ до $1,5 \cdot U_{\text{ном}}$	±0,1 % (γ)	±0,01
Среднее среднеквадратических значений фазного напряжения переменного тока $U_{\Phi cp}$, В	от $0.01 \cdot U_{ ext{ном}}$ до $1.5 \cdot U_{ ext{ном}}$	±0,1 % (γ)	±0,01
Среднеквадратическое значение фазных напряжений переменного тока прямой, обратной и нулевой последовательности $U_{1\Phi}$, $U_{2\Phi}$, $U_{0\Phi}$, B	от $0.01 \cdot U_{ ext{Hom}}$ до $1.5 \cdot U_{ ext{Hom}}$	±0,1 % (γ)	±0,01
Среднеквадратическое значение междуфазного напряжения переменного тока U_{AB} , U_{BC} , U_{CA} , B	от $0.01 \cdot U_{\mathrm{М}\Phi_{\mathrm{HOM}}}$ до $1.5 \cdot U_{\mathrm{M}\Phi_{\mathrm{HOM}}}$	±0,1 % (γ)	±0,01
Среднее среднеквадратических значений междуфазного напряжения переменного тока $U_{\text{МФср}}$, В	от $0.01 \cdot U_{\mathrm{М}\Phi_{\mathrm{HOM}}}$ до $1.5 \cdot U_{\mathrm{M}\Phi_{\mathrm{HOM}}}$	±0,1 % (γ)	±0,01
Среднеквадратическое значение междуфазных напряжений переменного тока прямой, обратной и нулевой последовательности $U_{1\text{M}\Phi}$, $U_{2\text{M}\Phi}$, $U_{0\text{M}\Phi}$, B	от $0,01 \cdot U_{\mathrm{М}\Phi_{\mathrm{HOM}}}$ до $1,5 \cdot U_{\mathrm{M}\Phi_{\mathrm{HOM}}}$	±0,1 % (γ)	±0,01
Среднеквадратическое значение силы переменного тока I_A , I_B , I_C , A	от $0,01 \cdot I_{\text{ном}}$ до $1,5 \cdot I_{\text{ном}}$	±0,1 % (γ)	±0,01
Среднее среднеквадратических значений силы переменного тока $I_{\Phi cp}$, A	от $0,01 \cdot I_{\text{ном}}$ до $1,5 \cdot I_{\text{ном}}$	±0,1 % (γ)	±0,01

Наименование характеристики	Диапазон измерений	Пределы допускаемой погрешности: абсолютной (Δ), относительной (δ), приведенной (γ)	Средний температурный коэффициент изменения
Среднеквадратическое значение силы переменного тока прямой, обратной и нулевой последовательности I_1, I_2, I_0 , A	от $0,01 \cdot I_{ ext{Hom}}$ до $1,5 \cdot I_{ ext{Hom}}$	±0,1 % (γ)	погрешности, %/°C ±0,01
Активная фазная и трехфазная электрическая мощность $P_{\rm A}, P_{\rm B}, P_{\rm C}, P,$ Вт	от $0.05 \cdot U_{\text{ном}}$ до $1.5 \cdot U_{\text{ном}}$ от $0.01 \cdot I_{\text{ном}}$ до $1.5 \cdot I_{\text{ном}}$ $0.25 \le \cos \phi \le 1$		±0,02
Реактивная фазная и трехфазная электрическая мощность Q_A , Q_B , Q_C , Q , вар	от $0,05 \cdot U_{\text{ном}}$ до $1,5 \cdot U_{\text{ном}}$ от $0,01 \cdot I_{\text{ном}}$ до $1,5 \cdot I_{\text{ном}}$ $0,25 \leq \sin \phi \leq 1$	$\pm 0,75\%$ (δ) для $0,02 \cdot I_{\text{Hom}} \leq I < 0,05 \cdot I_{\text{Hom}}$ $0,8 < \sin \varphi \leq 1$ $\pm 0,5\%$ (δ) для $0,05 \cdot I_{\text{Hom}} \leq I \leq 1,5 \cdot I_{\text{Hom}}$ $0,8 < \sin \varphi \leq 1$ $\pm 0,75\%$ (δ) для $0,05 \cdot I_{\text{Hom}} \leq I < 0,1 \cdot I_{\text{Hom}}$ $0,5 \leq \sin \varphi \leq 0,8$ $\pm 0,5\%$ (δ) для $0,1 \cdot I_{\text{Hom}} \leq I \leq 1,5 \cdot I_{\text{Hom}}$ $0,5 \leq \sin \varphi \leq 0,8$ $\pm 0,75\%$ (δ) для $0,1 \cdot I_{\text{Hom}} \leq I \leq 1,5 \cdot I_{\text{Hom}}$ $0,5 \leq \sin \varphi \leq 0,8$	±0,02

Продолжение таолицы /			
Наименование характеристики	Диапазон измерений	Пределы допускаемой погрешности: абсолютной (Δ),относительной (δ), приведенной Δ 1 (Δ 2)	Средний температурный коэффициент изменения погрешности, %/°С
Полная фазная и трехфазная электрическая мощность S_A , S_B , S_C , S , $B \cdot A$	от $0.05 \cdot U_{\text{ном}}$ до $1.5 \cdot U_{\text{ном}}$ от $0.01 \cdot I_{\text{ном}}$ до $1.5 \cdot I_{\text{ном}}$	$\pm 0.75~\%~(\delta)$ для $0.01 \cdot I_{\text{HoM}} \leq I < 0.05 \cdot I_{\text{HoM}}$ $\pm 0.5~\%~(\delta)$ для $0.05 \cdot I_{\text{HoM}} \leq I \leq 1.5 \cdot I_{\text{HoM}}$	±0,02
Активная электрическая мощность прямой, обратной и нулевой последовательности P_1 , P_2 , P_0 , B_T	от $0.05 \cdot U_{\text{ном}}$ до $1.5 \cdot U_{\text{ном}}$ от $0.01 \cdot I_{\text{ном}}$ до $1.5 \cdot I_{\text{ном}}$ $0.25 \le \cos \phi \le 1$	$\pm 0.75\% (\delta)$ для $0.01 \cdot I_{\text{HoM}} \leq I < 0.05 \cdot I_{\text{HoM}}$ $0.8 < \cos \varphi \leq 1$ $\pm 0.5\% (\delta)$ для $0.05 \cdot I_{\text{HoM}} \leq I \leq 1.5 \cdot I_{\text{HoM}}$ $0.8 < \cos \varphi \leq 1$ $\pm 0.75\% (\delta)$ для $0.02 \cdot I_{\text{HoM}} \leq I < 0.1 \cdot I_{\text{HoM}}$ $0.5 \leq \cos \varphi \leq 0.8$ $\pm 0.5\% (\delta)$ для $0.1 \cdot I_{\text{HoM}} \leq I \leq 1.5 \cdot I_{\text{HoM}}$ $0.5 \leq \cos \varphi \leq 0.8$ $\pm 0.75\% (\delta)$ для $0.1 \cdot I_{\text{HoM}} \leq I \leq 1.5 \cdot I_{\text{HoM}}$ $0.5 \leq \cos \varphi \leq 0.8$ $\pm 0.75\% (\delta)$ для $0.1 \cdot I_{\text{HoM}} \leq I \leq 1.5 \cdot I_{\text{HoM}}$ $0.25 \leq \cos \varphi < 0.5$	±0,02
Реактивная электрическая мощность прямой, обратной и нулевой последовательности Q_1 , Q_2 , Q_0 , вар	от $0.05 \cdot U_{\text{ном}}$ до $1.5 \cdot U_{\text{ном}}$ от $0.01 \cdot I_{\text{ном}}$ до $1.5 \cdot I_{\text{ном}}$ до $0.25 \leq \sin \phi \leq 1$	±3,0 % (δ)	±0,02
Полная электрическая мощность прямой, обратной и нулевой последовательности S_1 , S_2 , S_0 , $B \cdot A$	от $0,05 \cdot U_{\text{ном}}$ до $1,5 \cdot U_{\text{ном}}$ от $0,01 \cdot I_{\text{ном}}$ до $1,5 \cdot I_{\text{ном}}$	±3,0 % (δ)	±0,02
Коэффициент мощности фазный $cos\phi_A$, $cos\phi_B$, $cos\phi_C$	от -1,0 до +1,0	±0,01 (Δ)	-
Коэффициент мощности средний по трем фазам $cos \varphi_{cp}$	от -1,0 до +1,0	$\pm 0.01~(\Delta)$	-

Примечание- 1 - для параметров напряжения переменного тока погрешность приведена к номинальному значению; для параметров силы переменного тока погрешность приведена к верхней границе диапазона измерений $(1,5\cdot I_{\text{HoM}})$

Таблица 8 – Метрологические характеристики при измерении ПКЭ по классу А (по ГОСТ 30804.4.30-2013) с помощью модулей М3, М4 (опция QA)

(по ГОСТ 30804.4.30-2013) с помощью модул Наименование характеристики	Диапазон измерений	Пределы допускаемой погрешности: абсолютной (Δ) , относительной (δ) , приведенной (γ)
Отклонение частоты Δf_{10} , Γ ц	от -7,5 до +7,5	±0,01 Гц (Δ)
Положительное отклонение фазного напряжения переменного тока $\delta U_{\rm Ay(+)}$, $\delta U_{\rm By(+)}$, $\delta U_{\rm Cy(+)}$, %	от 0 до 50	±0,1 % (Δ)
Положительное отклонение междуфазного напряжения переменного тока $\delta U_{\text{ABy(+)}}$, $\delta U_{\text{BCy(+)}}$, $\delta U_{\text{CAy(+)}}$, %	от 0 до 50	±0,1% (Δ)
Отрицательное отклонение фазного напряжения переменного тока $\delta U_{\rm Ay(-)},\delta U_{\rm By(-)},\delta U_{\rm Cy(-)},\%$	от 0 до 90	±0,1 % (Δ)
Отрицательное отклонение междуфазного напряжения переменного тока $\delta U_{\text{ABy(-)}}$, $\delta U_{\text{BCy(-)}}$, $\delta U_{\text{CAy(-)}}$, %	от 0 до 90	±0,1 % (Δ)
Установившееся значение отклонения фазных напряжений переменного тока $\delta U_{\rm Ay}$, $\delta U_{\rm By}$, $\delta U_{\rm Cy}$, %	от -20 до +20	±0,2 % (Δ)
Установившееся значение отклонения междуфазного напряжения переменного тока $\delta U_{\rm M\Phi y},\%$	от -20 до +20	±0,2 % (Δ)
Кратковременная доза фликера фазного и междуфазного напряжения переменного тока P_{St} , отн. ед.	от 0,2 до 10	±5 % (δ)
Длительная доза фликера фазного и междуфазного напряжения переменного тока P_{Lt} , отн. ед.	от 0,2 до 10	±5 % (δ)
Длительность прерывания фазного и междуфазного напряжения переменного тока $t_{\text{прер}}$, с	от 0,02 до 60	±0,02 c (Δ)
Длительность провала фазного и междуфазного напряжения переменного тока $t_{\text{пров}}$, с	от 0,02 до 60	±0,02 c (Δ)
Длительность фазного и междуфазного перенапряжения переменного тока $t_{\text{пер}}$, с	от 0,02 до 60	±0,02 c (Δ)
Глубина фазного и междуфазного провала напряжения переменного тока $\delta U_{\rm пров}$, %	от 10 до 95	±0,2 % (Δ)
Остаточное значение при провале фазного и междуфазного напряжения переменного тока U_{res} , В	от $0.01 \cdot U_{ ext{hom}}$ до $0.9 \cdot U_{ ext{hom}}$	±0,2 % (γ)
Коэффициент временного перенапряжения для фазных и междуфазных напряжений переменного тока $K_{\text{пер}}$, отн.ед.	от 1,1 до 1,5	$\pm 0,\!002$ отн. ед (Δ)

продолжение паслицы с		
Наименование характеристики	Диапазон измерений	Пределы допускаемой погрешности: абсолютной (Δ) , относительной (δ) , приведенной (γ)
Максимальное значение напряжения переменного тока для фазного и междуфазного перенапряжения $U_{\text{пер}}$, В	от 1,1 $\cdot U_{ ext{hom}}$ до 1,5 $\cdot U_{ ext{hom}}$	±0,2 % (γ)
Среднеквадратическое значение фазного напряжения переменного тока основной частоты $U_{A(1)}$, $U_{B(1)}$, $U_{C(1)}$, B	от $0.01 \cdot U_{\text{ном}}$ до $1.5 \cdot U_{\text{ном}}$	±0,1 % (γ)
Среднеквадратическое значение гармонической составляющей фазного напряжения переменного тока порядка n , где $n=250$, $U_{\rm sg,n}$, B	от $0,001 \cdot U_1$ до $0,3 \cdot U_1$	$\pm 5~\%~(\delta)$ при $U_{ m sg,n} \geq 0,01 \cdot U_1$ $\pm 0,05~\%~(\gamma)$ при $U_{ m sg,n} < 0,01 \cdot U_1$
Среднеквадратическое значение интергармонической составляющей фазного напряжения переменного тока порядка m , где $m=149,\ U_{\rm isg,m},$ В	от $0,001 \cdot U_1$ до $0,3 \cdot U_1$	$\pm 5~\%~(\delta)$ при $U_{ m isg,m} \geq 0.01 \cdot U_1$ $\pm 0.05~\%~(\gamma)$ при $U_{ m isg,m} < 0.01 \cdot U_1$
Коэффициент искажения синусоидальности кривой фазного напряжения переменного тока $K_{\rm U}$, %	от 0,1 до 50	$\pm 5~\%~(\delta)$ при $K_{\mathrm{U}} \geq 1.0~\%$ $\pm 0.05~\%~(\Delta)$ при $K_{\mathrm{U}} < 1.0~\%$
Коэффициент гармонической составляющей фазного напряжения переменного тока порядка n , где $n=250$, $K_{\text{Usg,n}}$, %	от 0 до 30	$\pm 5~\%~(\delta)$ при $K_{\mathrm{Usg,n}} \geq 1,0~\%$ $\pm 0,05~\%~(\Delta)$ при $K_{\mathrm{Usg,n}} < 1,0~\%$
Коэффициент интергармонической составляющей фазного напряжения переменного тока порядка m , где $m = 149$, $K_{\text{Uisg,m}}$, %	от 0 до 30	$\pm 5~\%~(\delta)$ при $K_{\mathrm{Uisg,m}} \geq 1,0~\%$ $\pm 0,05~\%~(\Delta)$ при $K_{\mathrm{Uisg,m}} < 1,0~\%$
Среднеквадратическое значение междуфазного напряжения переменного тока основной частоты $U_{AB(1)}$, $U_{BC(1)}$, $U_{CA(1)}$, B	от $0,01 \cdot U_{\mathrm{М}\Phi_{\mathrm{HOM}}}$ до $1,5 \cdot U_{\mathrm{M}\Phi_{\mathrm{HOM}}}$	±0,1 % (γ)
Среднеквадратическое значение гармонической составляющей междуфазного напряжения переменного тока порядка n , где $n=250$, $U_{\rm M\phisg,n}$, B	от $0,001 \cdot U_{1{ m M}}$ до $0,3 \cdot U_{1{ m M}}$	$\pm 5~\%~(\delta)$ при $U_{ m M\phi sg,n} \! \geq 0,\! 01 \! \cdot \! U_{ m 1M\phi} \ \pm 0,\! 05~\%~(\gamma)$ при $U_{ m M\phi sg,n} \! < 0,\! 01 \! \cdot \! U_{ m 1M\phi}$
Среднеквадратическое значение интергармонической составляющей междуфазного напряжения переменного тока порядка m , где $m = 149$, $U_{M\phi isg,m}$, B	от $0,001 \cdot U_{1{ m M}}$ до $0,3 \cdot U_{1{ m M}}$	$\pm 5~\%~(\delta)$ при $U_{{\it M}\phi { m isg,m}} \geq 0{,}01{\cdot}U_{1{ m M}\phi}$ $\pm 0{,}05~\%~(\gamma)$ при $U_{{\it M}\phi { m isg,m}} < 0{,}01{\cdot}U_{1{ m M}\phi}$
Коэффициент искажения синусоидальности кривой междуфазного напряжения переменного тока $K_{\text{Uмф}}$, %	от 0,1 до 50	$\pm 5~\%~(\delta)$ при $K_{\mathrm{Uм} \varphi} \geq 1,0~\%$ $\pm 0,05~\%~(\Delta)$ при $K_{\mathrm{Uм} \varphi} < 1,0~\%$
Коэффициент гармонической составляющей междуфазного напряжения переменного тока порядка n , где $n=250$, $K_{\text{Uмфsg,n}}$, %	от 0 до 30	$\pm 5~\%~(\delta)$ при $K_{\mathrm{Um\phi sg,n}} \geq 1.0~\%$ $\pm 0.05~\%~(\Delta)$ при $K_{\mathrm{Um\phi sg,n}} < 1.0~\%$

продолжение таолицы о		
Наименование характеристики	Диапазон измерений	Пределы допускаемой погрешности: абсолютной (Δ) , относительной (δ) , приведенной (γ)
Коэффициент интергармонической составляющей междуфазного напряжения переменного тока порядка m , где $m=149$, $K_{\text{Uмфisg,m}}$, %	от 0 до 30	$\pm 5 \% (\delta)$ πρυ $K_{\text{Um}\phi isg,m} \ge 1,0 \%$ $\pm 0,05 \% (\Delta)$ πρυ $K_{\text{Um}\phi isg,m} < 1,0 \%$
Среднеквадратическое значение силы переменного тока основной частоты $I_{A(1)}$, $I_{B(1)}$, $I_{C(1)}$, A	от $0.01 \cdot I_{\text{ном}}$ до $1.5 \cdot I_{\text{ном}}$	±0,1 % (γ)
Среднеквадратическое значение гармонической составляющей силы переменного тока порядка n , где $n=250$, $I_{\rm sg,n}$, A	от $0,0005 \cdot I_1$ до $0,3 \cdot I_1$	$\pm 5~\%~(\delta)$ при $I_{ m sg,n} \geq 0,03 \cdot I_1$ $\pm 0,15~\%~(\gamma)$ при $I_{ m sg,n} < 0,03 \cdot I_1$
Среднеквадратическое значение интергармонической составляющей силы переменного тока порядка m , где $m = 149$,	от $0,\!0005 \cdot I_1$ до $0,\!3 \cdot I_1$	$\pm 5~\%~(\delta)$ при $I_{ m isg,m} \geq 0.03 \cdot I_1$ $\pm 0.15~\%~(\gamma)$
$I_{ m isg,m}$, А Коэффициент искажения синусоидальности кривой тока $K_{ m I}$, %	от 0 до 50	при $I_{\text{isg,m n}} < 0.03 \cdot I_1$ $\pm 5 \% (\delta)$ при $K_1 \ge 3.0 \%$ $\pm 0.15 \% (\Delta)$ при $K_1 < 3.0 \%$
Коэффициент гармонической составляющей силы переменного тока порядка n , где $n=250,K_{\mathrm{Isg,n}},\%$	от 0 до 30	$\pm 5~\%~(\delta)$ при $K_{\mathrm{Isg,n}} \! \geq 3.0~\%$ $\pm 0.15~\%~(\Delta)$ при $K_{\mathrm{Isg,n}} \! < 3.0~\%$
Коэффициент интергармонической составляющей силы переменного тока порядка m , где $m=149$, $K_{\rm lisg,m}$, %	от 0 до 30	$\pm 5~\%~(\delta)$ при $K_{ m lisg,m} \geq 1,0~\%$ $\pm 0,15~\%~(\Delta)$ при $K_{ m lisg,m} < 1,0~\%$
Коэффициент несимметрии напряжений по обратной последовательности K_{2U} , %	от 0 до 20	±0,15 % (Δ)
Коэффициент несимметрии напряжений по нулевой последовательности K_{0U} , %	от 0 до 20	±0,15 % (Δ)
Коэффициент несимметрии токов по обратной последовательности K_{2I} , %	от 0 до 20	$\pm 0,3~\%$ (Δ) при $0,05 \cdot I_{\text{HOM}} \leq I \leq 1,5 \cdot I_{\text{HOM}}$
Коэффициент несимметрии токов по нулевой последовательности K_{01} , %	от 0 до 20	$\pm 0.3~\%~(\Delta)$ при $0.05 \cdot I_{ ext{HoM}} \leq I \leq 1.5 \cdot I_{ ext{HoM}}$
Угол фазового сдвига между фазными напряжениями основной гармоники $\varphi_{\text{UAB}(1)}, \varphi_{\text{UBC}(1)}, \varphi_{\text{UCA}(1)}, \dots$	от -180 до +180	±0,1° (Δ)
Угол фазового сдвига между междуфазными напряжениями основной гармоники $\varphi_{U(AB-BC)(1)}$, $\varphi_{U(BC-CA)(1)}$, $\varphi_{U(CA-AB)(1)}$,	от -180 до +180	±0,1° (Δ)
Угол фазового сдвига между током и напряжением основной гармоники $\varphi_{\text{UIA}(1)}, \varphi_{\text{UIB}(1)}, \varphi_{\text{UIC}(1)}, \dots^{\circ}$	от -180 до +180	$\pm 0,1^{\circ}$ (Δ) при $0,1\cdot I_{\text{HoM}} \leq I \leq 1,5\cdot I_{\text{HoM}} \ \pm 0,5^{\circ}$ (Δ) при $0,01\cdot I_{\text{HoM}} \leq I < 0,1\cdot I_{\text{HoM}}$

Наименование характеристики	Диапазон измерений	Пределы допускаемой погрешности: абсолютной (Δ), относительной (δ), приведенной (γ)	
Угол фазового сдвига между фазным током и напряжением гармонической составляющей порядка n (n =250), $\varphi_{\text{UIA(n)}}$, $\varphi_{\text{UIB(n)}}$, $\varphi_{\text{UIC(n)}}$,°	от -180 до +180	$\pm 3^{\circ}$ (Δ) при $0.5 \cdot I_{\text{HoM}} \leq I \leq 1.5 \cdot I_{\text{HoM}}$ $K_{\text{I(n)}} \geq 5$ %, $K_{\text{U(n)}} \geq 5$ % $\pm 5^{\circ}$ (Δ) при $0.5 \cdot I_{\text{HoM}} \leq I \leq 1.5 \cdot I_{\text{HoM}}$ $1 \% \leq K_{\text{I(n)}} < 5 \%$ $1 \% \leq K_{\text{U(n)}} < 5 \%$ $\pm 5^{\circ}$ (Δ) при $0.1 \cdot I_{\text{HoM}} \leq I \leq 0.5 \cdot I_{\text{HoM}}$ $K_{\text{I(n)}} \geq 5$ %, $K_{\text{U(n)}} \geq 5$ %	
Угол фазового сдвига между фазными токами основной гармоники $\varphi_{\text{IAB(1)}}$, $\varphi_{\text{IBC(1)}}$, $\varphi_{\text{ICA(1)}}$, °	от -180 до +180	$\pm 0.3^{\circ}$ (Δ) при $0.1 \cdot I_{\text{HoM}} \leq I \leq 1.5 \cdot I_{\text{HoM}} \ \pm 1^{\circ}$ (Δ) при $0.01 \cdot I_{\text{HoM}} \leq I < 0.1 \cdot I_{\text{HoM}}$	
Угол фазового сдвига между током и напряжением прямой последовательности $\varphi_{\rm U1II}, \dots^{\circ}$	от -180 до +180	$\pm 0,5^{\circ}$ (Δ) при $0,1 \cdot I_{\text{HoM}} \leq I \leq 1,5 \cdot I_{\text{HoM}} \ \pm 5^{\circ}$ (Δ) при $0,01 \cdot I_{\text{HoM}} \leq I < 0,1 \cdot I_{\text{HoM}}$	
Угол фазового сдвига между током и напряжением нулевой, обратной последовательностей φ_{U010} , φ_{U212} ,°	от -180 до +180	±3° (Δ)	
Примечание -1 – для параметров напряжения переменного тока погрешность приведена к			

Примечание — 1 — для параметров напряжения переменного тока погрешность приведена к номинальному значению; для параметров силы переменного тока погрешность приведена к верхнему пределу диапазона измерений $(1,5 \cdot I_{\text{Hom}})$

Таблица 9 — Метрологические характеристики при измерении параметров переменного тока с помощью модулей P5, P8 (опция PM)

Наименование характеристики	Диапазон	Пределы допускаемой погрешности: абсолютной (Δ);
Tamanonosamo naparrepnermar	измерений	относительной (δ); приведенной (γ)
Польто политический Ст	15 55	1 17
Частота переменного тока f , Γ ц	от 45 до 55	±0,01 Гц (Δ)
Среднеквадратическое значение фазного напряжения переменного тока U_A , U_B , U_C , B	от $0.05 \cdot U_{\text{ном}}$ до $1.5 \cdot U_{\text{ном}}$ от $0.05 \cdot U_{\text{ном}}$ до $3.0 \cdot U_{\text{ном}}^{-1}$	±0,2 % (γ)
Среднеквадратическое значение междуфазного напряжения переменного тока U_{AB} , U_{BC} , U_{CA} , B	от $0.05 \cdot U_{\text{ном}}$ до $1.5 \cdot U_{\text{ном}}$ от $0.05 \cdot U_{\text{ном}}$ до $3.0 \cdot U_{\text{ном}}^{-1}$	±0,2 % (γ)
Среднеквадратическое значение напряжения переменного тока прямой, обратной и нулевой последовательности U_1 , U_2 , U_0 , B	от $0.05 \cdot U_{\text{ном}}$ до $1.5 \cdot U_{\text{ном}}$ от $0.05 \cdot U_{\text{ном}}$ до $3.0 \cdot U_{\text{ном}}^{-1}$	±0,2 % (γ)

продолжение таолицы у		Пределы допускаемой
Наименование характеристики	Диапазон	погрешности: абсолютной (Δ);
панменование ларактериетики	измерений	относительной (δ) ;
		приведенной (ү)
		±2 % (δ)
Среднеквадратические значения силы		при 1,5 A ≤ <i>I</i> < 7,5 A
переменного тока измерительных	от 1,5 до 2000	$\pm 1~\%~(\delta)$ при $7.5~{ m A} \le I < 15~{ m A}$
каналов I1, I2, I3, A		$100 7,5 A \le I < 15 A$ $\pm 0.2 \% (\delta)$
		±0,2 % (б) при 15 A ≤ <i>I</i> < 2000 A
		$+2\%(\delta)$
		при 1,5 A ≤ <i>I</i> < 7,5 A
Среднеквадратические значения силы		$\pm 1\% (\delta)$
переменного тока измерительного	от 1,5 до 700	при 7,5 А ≤ <i>I</i> < 15 А
канала I4, A		$\pm 0.2\% (\delta)$
		при $15 \text{ A} \le I \le 700 \text{ A}$
Среднеквадратическое значение силы		±0,75 % (δ)
переменного тока прямой, обратной и	от 1,5 до 2000	при 1,5 A ≤ <i>I</i> < 7,5 A
нулевой последовательности $I_1, I_2,$	01 1,5 до 2000	$\pm 0.2\%(\delta)$
I_0 , A		при 7,5 A ≤ <i>I</i> < 2000 A
		$\pm 0.4\% (\delta)$
		для 1,5 A $\leq I < 7,5$ A;
		$0.8 < \cos \varphi \le 1$
		±0,2 % (δ)
		для 7,5 A \leq $I \leq$ 2000 A;
		$0.8 < \cos \varphi \le 1$
Активная фазная и трехфазная	от $0.05 \cdot U_{ ext{ном}}$ до $1.5 \cdot U_{ ext{ном}}$	$\pm 0.5\%(\delta)$
электрическая мощность P_{A} , P_{B} , P_{C} ,	$1,5 \le I \le 2000$	для 1,5 A \leq I $<$ 7,5 A;
Р, Вт	$0.25 \le \cos \varphi \le 1$	$0.5 \le \cos \varphi \le 0.8$
		10.2.07 (8)
		$\pm 0.3~\%~(\delta)$ для 7,5 A \leq I \leq 2000 A;
		$0.5 \le \cos \varphi \le 0.8$
		$0.0 \le \cos \psi \le 0.0$
		±0,5 % (δ)
		для 7,5 $A \le I \le 2000 A$;
		$0.25 \le \cos \varphi < 0.5$

продолжение тавлицы у		
Наименование характеристики	Диапазон измерений	Пределы допускаемой погрешности: абсолютной (Δ); относительной (δ); приведенной (γ)
Реактивная фазная и трехфазная электрическая мощность Q_A , Q_B , Q_C , Q , вар	от $0.05 \cdot U_{\text{ном}}$ до $1.5 \cdot U_{\text{ном}}$ $1.5 \leq I \leq 2000$ $0.25 \leq \sin \phi \leq 1$	$\pm 0.75\% (\delta)$ для $1.5 \text{ A} \le \text{I} < 7.5 \text{ A};$ $0.8 < \sin \phi \le 1$ $\pm 0.5\% (\delta)$ для $7.5 \text{ A} \le \text{I} \le 2000 \text{ A};$ $0.8 < \sin \phi \le 1$ $\pm 0.75\% (\delta)$ для $1.5 \text{ A} \le \text{I} < 7.5 \text{ A};$ $0.5 < \sin \phi \le 0.8$ $\pm 0.5\% (\delta)$ для $7.5 \text{ A} \le \text{I} \le 2000 \text{ A};$ $0.5 < \sin \phi \le 0.8$ $\pm 0.5\% (\delta)$ для $7.5 \text{ A} \le \text{I} \le 2000 \text{ A};$ $0.5 < \sin \phi \le 0.8$ $\pm 0.75\% (\delta)$ для $7.5 \text{ A} \le \text{I} \le 2000 \text{ A};$ $0.5 < \sin \phi \le 0.8$
Полная фазная и трехфазная электрическая мощность S_A , S_B , S_C , S , $B \cdot A$	от $0.05 \cdot U_{\text{ном}}$ до $1.5 \cdot U_{\text{ном}}$ $1.5 \leq I \leq 2000$	$\pm 0.75~\%~(\delta)$ для $1.5~\mathrm{A} \leq \mathrm{I} < 7.5~\mathrm{A};$ $\pm 0.5~\%~(\delta)$ для $7.5~\mathrm{A} \leq \mathrm{I} \leq 2000~\mathrm{A};$
Угол фазового сдвига между током и напряжением основной гармоники, $\phi_{UIA(1)}$, $\phi_{UIB(1)}$, $\phi_{UIC(1)}$, \circ	от -180 до +180	$\pm 0.5^{\circ}$ (Δ) при $1.5~{\rm A} \le {\rm I} < 7.5~{\rm A}$ $\pm 0.2^{\circ}$ (Δ) при $7.5~{\rm A} \le {\rm I} < 2000~{\rm A}$
Коэффициент мощности фазный соsφ _A , соsφ _B , соsφ _C	от -1,0 до +1,0	±0,01 (Δ)

Примечания:

1 - метрологические характеристики модулей P5, P8 приведены для применения с датчиками тока (катушками Роговского) поставляемыми в комплекте с терминалом;

2 - только для модулей Р8.

Таблица 10 — Метрологические характеристики при измерении параметров переменного напряжения с помощью модулей P9 (опция PV)

Наименование характеристики	Диапазон измерений	Пределы допускаемой погрешности: абсолютной (Δ); приведенной (γ)
Среднеквадратическое значение фазного напряжения переменного тока U_A , U_B , U_C , B	от $0,05 \cdot U_{ ext{hom}}$ до $1,5 \cdot U_{ ext{hom}}$	±0,2 % (γ)
Среднеквадратическое значение междуфазного напряжения переменного тока $U_{\rm AB},U_{\rm BC},U_{\rm CA},{\rm B}$	от $0.05 \cdot U_{\text{ном}}$ до $1.5 \cdot U_{\text{ном}}$	±0,2 % (γ)

1 "		
Наименование	Диапазон	Пределы допускаемой
характеристики	измерений	погрешности:
		абсолютной (Δ);
		приведенной (ү)
Среднеквадратическое значение напряжения переменного тока прямой, обратной и нулевой последовательности U_1 , U_2 , U_0 , B	от $0.05 \cdot U_{ ext{hom}}$ до $1.5 \cdot U_{ ext{hom}}$	±0,2 % (γ)
Частота переменного тока f , Γ ц	от 45 до 55	±0,01 Гц (Δ)

Таблица 11 — Пределы допускаемой основной относительной погрешности измерений активной электрической энергии прямого и обратного направления с симметричными нагрузками для терминала класса точности 0,2S (опция M, PM)

Значение силы переменного тока, А*	Коэффициент мощности соѕ ф	Пределы допускаемой основной относительной погрешности измерений, %
$0.01 \cdot I_{\text{HOM/6}} \le I < 0.05 \cdot I_{\text{HOM/6}}$ $0.05 \cdot I_{\text{HOM/6}} \le I \le I_{\text{Makc/6}}$	1,0	±0,4 ±0,2
$0.02 \cdot I_{\text{HOM/6}} \leq I < 0.10 \cdot I_{\text{HOM/6}}$ $0.10 \cdot I_{\text{HOM/6}} \leq I \leq I_{\text{Makc/6}}$	0,5 (инд.) 0,8 (емк.)	±0,5 ±0,3
$0.10 \cdot I_{ ext{HOM/6}} \leq I \leq I_{ ext{MAKC}}$	0,25 (инд.) 0,5 (емк.)	±0,5

Примечание - * - здесь и далее, номинальное значение силы переменного тока ($I_{\text{ном}}$) применяется для опции M, базовый ток (I_6) применяется для опции PM

Таблица 12 – Пределы допускаемой основной относительной погрешности измерений активной электрической энергии прямого и обратного направления для однофазной нагрузки при симметрии многофазных напряжений для терминала класса точности 0,2S (опция M, PM)

Значение силы переменного тока, А	Коэффициент мощности соѕ ф	Пределы допускаемой основной относительной погрешности измерений, %
$0.05 \cdot I_{ ext{Hom/6}} \leq I \leq I_{ ext{Marc}}$	1,0	±0,3
$0.10 \cdot I_{ ext{Hom/6}} \leq I \leq I_{ ext{Makc}}$	0,5 (инд.)	$\pm 0,4$

Таблица 13 — Пределы допускаемой основной относительной погрешности измерений реактивной электрической энергии прямого и обратного направления с симметричными нагрузками для терминала класса точности 0,5 (опция M, PM)

Значение силы переменного тока, А	Коэффициент мощности sin ф	Пределы допускаемой основной относительной погрешности измерений, %
$0.02 \cdot I_{\text{HOM/6}} \le I < 0.05 \cdot I_{\text{HOM/6}}$	1	±0,8
$0.05 \cdot I_{ ext{Hom/6}} \leq I \leq I_{ ext{Makc}}$	1	±0,5
$0.02 \cdot I_{\text{HOM/6}} \leq I < 0.10 \cdot I_{\text{HOM/6}}$	0,5	± 0.8
$0.10 \cdot I_{ ext{Hom/f}} \leq I \leq I_{ ext{Marc}}$	0,5	±0,5
$0.10 \cdot I_{ ext{Hom/f}} \leq I \leq I_{ ext{Marc}}$	0,25	± 0.8

Таблица 14 — Пределы допускаемой основной относительной погрешности измерений реактивной электрической энергии прямого и обратного направления для однофазной нагрузки при симметрии многофазных напряжений для терминала класса точности 0,5 (опция M, PM)

Значение силы переменного тока, А	Коэффициент мощности sin ф	Пределы допускаемой основной относительной погрешности измерений, %
$0.05 \cdot I_{ ext{Hom/6}} \leq I \leq I_{ ext{Makc}}$	1,0	±0.8
$0.10 \cdot I_{ ext{Hom/6}} \leq I \leq I_{ ext{Makc}}$	0,5 (инд./емк.)	± 0.8

Таблица 15 — Пределы допускаемой дополнительной относительной погрешности измерений активной электрической энергии прямого и обратного направления для терминала класса точности 0,2S при изменении напряжения питания (опция M, PM)

, 1	1		
Значение напряжения питания, В	Значение силы переменного тока при симметричной нагрузке, А	Коэффициент мощности cos ф	Пределы допускаемой дополнительной относительной погрешности измерений, %
от 0,9· <i>U</i> _{ном} до 1,15· <i>U</i> _{ном}	$0.05 \cdot I_{ ext{Hom/6}} \leq I \leq I_{ ext{Marc}}$	1,0	±0,1
от 0,9· <i>U</i> _{ном} до 1,15· <i>U</i> _{ном}	$0.10 \cdot I_{ ext{Hom/6}} \leq I \leq I_{ ext{Makc}}$	0,5 (инд.)	±0,2

Таблица 16 — Пределы допускаемой дополнительной относительной погрешности измерений активной электрической энергии прямого и обратного направления для терминала класса точности 0,2S при изменении частоты питания (опция M, PM)

Значение частоты питания, Гц	Значение силы переменного тока при симметричной нагрузке, А	Коэффициент мощности соѕ ф	Пределы допускаемой дополнительной относительной погрешности измерений, %
от 47,5 до 52,5	$0.05 \cdot I_{ ext{Hom/6}} \leq I \leq I_{ ext{Makc}}$	1,0	±0,1
от 47,5 до 52,5	$0,\!10\!\cdot\! I_{\scriptscriptstyle{HOM/6}}\!\leq\!I\!\leq\!I_{\scriptscriptstyle{MAKC}}$	0,5 (инд.)	_0,1

Таблица 17 — Средний температурный коэффициент измерений активной электрической энергии прямого и обратного направления для терминала класса точности 0,2S (опция M, PM)

Значение силы переменного тока, А	Коэффициент мощности соs ф	Средний температурный коэффициент, %/°C
$0.05 \cdot I_{\text{HOM/6}} \leq I \leq I_{\text{Makc}}$	1,0	±0,01
$0.10 \cdot I_{\text{HOM/6}} \leq I \leq I_{\text{MAKC}}$	0,5 (инд.)	±0,02

Таблица 18 — Пределы допускаемой дополнительной относительной погрешности измерений реактивной электрической энергии прямого и обратного направления для терминала класса точности 0,5 при изменении напряжения питания (опция M, PM)

Значение напряжения питания, В	Значение силы переменного тока при симметричной нагрузке, А	к оэмминиент	Пределы допускаемой дополнительной относительной погрешности измерений, %
от $0,9 \cdot U_{\text{ном}}$ до $1,15 \cdot U_{\text{ном}}$	$0.05 \cdot I_{ ext{hom/6}} \leq I \leq I_{ ext{makc}}$	1,0	±0,3
от $0,9 \cdot U_{\text{ном}}$ до $1,15 \cdot U_{\text{ном}}$	$0,10 \cdot I_{ ext{Hom/6}} \leq I \leq I_{ ext{Makc}}$	0,5 (инд./емк.)	±0,5

Таблица 19 — Пределы допускаемой дополнительной относительной погрешности измерений реактивной электрической энергии прямого и обратного направления для терминала класса точности 0,5 при изменении частоты питания (опция M, PM)

Значение частоты питания, Гц	Значение силы переменного тока при симметричной нагрузке, А	Коэффициент мощности sin ф	Пределы допускаемой дополнительной относительной погрешности измерений, %
от 47,5 до 52,5	$0.05 \cdot I_{\text{HOM/6}} \leq I \leq I_{\text{Makc}}$	1,0	10.8
от 47,5 до 52,5	$0.10 \cdot I_{\text{HOM/6}} \leq I \leq I_{\text{Makc}}$	0,5 (инд.)	± 0.8

Таблица 20 — Средний температурный коэффициент измерений реактивной электрической энергии прямого и обратного направления для терминала класса точности 0,5 (опция M, PM)

Значение силы переменного тока, А	Коэффициент мощности sin ф	Средний температурный коэффициент, %/°C
$0.05 \cdot I_{\text{HOM/6}} \leq I \leq I_{\text{Makc}}$	1,0	±0,03
$0.10 \cdot I_{\text{HOM/6}} \leq I \leq I_{\text{Makc}}$	0,5 (инд./емк.)	$\pm 0,05$

Таблица 21 – Общие технические характеристики

Наименование характеристики	Значение
Стартовый ток (чувствительность) для терминалов с опцией	$0.001 \cdot I_{ ext{HoM}}$
«M», «QS», «QA», A	0,001 1ном
Стартовый ток (чувствительность) для терминалов с опцией	0,5
«PM», A	0,5
Параметры сети питания ¹ :	
- напряжение переменного тока с частотой от 47 до 63 Гц, В	от 176 до 242
- напряжение постоянного тока, В	от 176 до 264, от 18 до 36
- напряжение выпрямленного постоянного тока, В	от 187 до 264
Мощность, потребляемая по цепи питания, В А, не более	30 для исполнения ARIS 23x5
	45 для исполнения ARIS 23x8
Мощность, потребляем цепью измерения напряжения, В А, не	0,1
более	0,1
Мощность, потребляем цепью измерения тока, В А, не более	0,1
Степень защиты оболочки по ГОСТ 14254-2015:	
- для корпуса	IP20 (IP21 опционально)
- для лицевой панели	IP54
Габаритные размеры (В×Ш×Г) со встроенным ИЧМ, мм,	
не более:	
- для исполнения ARIS-23x5	197×214×186
- для исполнения ARIS-23x8	197×305×186
Масса, кг, не более:	
- для исполнения ARIS-23x5 (со встроенным ИЧМ)	4,0 (4,9)
- для исполнения ARIS-23x8 (со встроенным ИЧМ)	5,0 (6,5)
Нормальные условия измерений:	
- температура окружающего воздуха, °С	20±5
- относительная влажность воздуха, %	от 30 до 80
- высота размещения над уровнем моря, м, не более	500
Рабочие условия измерений:	
- температура окружающего воздуха, °С	от -40 до +55
- допустимая относительная влажность воздуха при	
эксплуатации при температуре +25 °C, %	98
- высота размещения над уровнем моря, м, не более	2000
Среднее время наработки на отказ, ч	160 000
Средний срок службы, лет	25
Примечание	
1 - параметры сети питания определяются используемым модул	пем источника питания
<u> </u>	

Знак утверждения типа

наносится на боковую панель терминала офсетной печатью (или другим способом, не ухудшающим качества), на титульный лист руководства по эксплуатации и формуляра типографским способом.

Комплектность средства измерений

Комплектность терминалов представлена в таблице 22.

Таблица 22 – Общие технические характеристики

Наименование	Обозначение	Количество, шт.
Терминал релейной защиты и автоматики многофункциональный для сетей 6–35 кВ ARIS-23хх	ПБКМ.421451.301	1
Формуляр	ПБКМ.421451.301 ФО	1
Электронная ключ-карта	EKey.1	1
Руководство по эксплуатации (на USB флэш-накопителе)	ПБКМ.421451.301 РЭ	1
Руководство по эксплуатации. Функции РЗиА линии 6–35 кВ (на USB флэш-накопителе)	ПБКМ.421451.301 РЭ1	11
Руководство по эксплуатации. Функции РЗиА ввода 6–35 кВ (на USB флэш-накопителе)	ПБКМ.421451.301 РЭ2	11
Руководство по эксплуатации. Функции РЗиА секционного выключателя 6–35 кВ (на USB флэш-накопителе)	ПБКМ.421451.301 РЭ3	11

Продолжение таблицы 24

Наименование	Обозначение	Количество, шт.
Руководство по эксплуатации. Функции РЗиА трансформатора напряжения 6–35 кВ (на USB флэш-накопителе)	ПБКМ.421451.301 РЭ4	11
Терминалы релейной защиты и автоматики многофункциональные 6-35кВ ARIS-23хх. Инструкция эксплуатационная специальная (на USB флэш-накопителе)	ПБКМ.421451.301 ИС	1
Устройство человеко-машинного взаимодействия (ИЧМ). Инструкция эксплуатационная специальная (на USB флэш-накопителе)	ПБКМ.421451.301 ИС1	1
Методические указания по расчету уставок (на USB флэш-накопителе)	ПБКМ.421451.301 РРУ1	1
Методика поверки (на USB флэш-накопителе)	ПБКМ.421451.301 МП	1
Примечания: ¹ - Комплект документации определяется типом поставляемог	о терминала.	

Поверка

осуществляется по документу ПБКМ.421451.301 МП «ГСИ. Терминалы релейной защиты и автоматики многофункциональные для сетей 6-35 кВ ARIS-23xx. Методика поверки», утвержденному ООО «ИЦРМ» 21.07.2020 г.

Основные средства поверки:

- радиочасы МИР РЧ-02 (регистрационный номер в Федеральном информационном фонде 46656-11);
- калибратор переменного тока Ресурс-К2М (регистрационный номер в Федеральном информационном фонде 31319-12);
- калибратор универсальный 9100 (регистрационный номер в Федеральном информационном фонде 25985-09);
- установка модульная трехфазная портативная для поверки счетчиков электрической энергии PTS 400.3 (регистрационный номер в Федеральном информационном фонде 33229-06);
- трансформатор тока эталонный двухступенчатый ИТТ-3000.5 (регистрационный номер в Федеральном информационном фонде 19457-00).

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых терминалов с требуемой точностью.

Знак поверки наносится на свидетельство о поверке и формуляр.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к терминалам релейной защиты и автоматики многофункциональным для сетей 6-35 кВ ARIS-23xx

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия

ГОСТ 30804.4.30-2013 Электрическая энергия. Совместимость технических средств электромагнитная. Методы измерений показателей качества электрической энергии

ПБКМ.421451.301 ТУ Терминалы релейной защиты и автоматики многофункциональные для сетей 6-35 кВ ARIS-23хх. Технические условия

Изготовитель

Общество с ограниченной ответственностью «Прософт-Системы» (ООО «Прософт-Системы»)

ИНН 6660149600

Адрес: 620102, г. Екатеринбург, ул. Волгоградская, 194а

Телефон: +7 (343) 356-51-11 Факс: +7 (343) 310-01-06

Web-сайт: www.prosoftsystems.ru E-mail: info@prosoftsystems.ru

Испытательный центр

Общество с ограниченной ответственностью «Испытательный центр разработок в области метрологии»

Адрес: 117546, г. Москва, Харьковский проезд, д. 2, этаж 2, пом. І, ком. 35,36

Телефон: +7 (495) 278-02-48

E-mail: info@ic-rm.ru

Аттестат аккредитации ООО «ИЦРМ» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.311390 от 18.11.2015 г.