Приложение № 14 к сведениям о типах средств измерений, прилагаемым к приказу Федерального агентства по техническому регулированию и метрологии от «7» декабря 2020 г. № 2011

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Преобразователи температуры многоточечные ПТМ

Назначение средства измерений

Преобразователи температуры многоточечные ПТМ (далее – преобразователи) предназначены для измерений температуры продуктов (жидких, газообразных и сыпучих материалов).

Описание средства измерений

Преобразователи состоят из измерительного элемента (ИЭ) и электронного преобразователя (ЭП). ИЭ состоит из датчиков температуры (микросхем) и защитной оболочки. ЭП выполнен в виде печатной платы, заключённой в герметизированный корпус. ЭП включает в свой состав микроконтроллер, схему сопряжения и дисплей (опционально).

Принцип действия преобразователей основан на зависимости выходного сигнала датчиков температуры от измеряемой температуры. ЭП обрабатывает выходные сигналы поступающие от датчиков температуры и преобразовывает полученную информацию в цифровой код — значение температуры. Далее результаты измерений индицируются на дисплее ЭП и/или передаются во вторичные приборы по интерфейсам связи.

Преобразователи выпускаются в различных исполнениях, отличающиеся видами (гибкий, жесткий) и длиной ИЭ, видами ЭП (с дисплеем, без дисплея), интерфейсами связи (HART (с привязкой выходного аналогового сигнала силы постоянного тока от 4 до 20 мА к одному датчику температуры на выбор), UART, RS-485), количеством датчиков температуры, метрологическими и техническими характеристиками, приведенных в таблицах 2-3. Код заказа преобразователей указан в эксплуатационной документации.

Общий вид преобразователей представлен на рисунке 1.

Защита от несанкционированного доступа обеспечивается конструкцией преобразователей. Пломбирование преобразователей не предусмотрено.

Схема условного обозначения преобразователей:

ПТМ	1	_	2	_	3	_	4	_	5	_	6	_	7	_	8	_	9	_	10	_	11	_	12	_	13

где,

- 1 Код обозначения типа и материала ИЭ;
- 2 Код обозначения выходного сигнала;
- 3 Код обозначения вида взрывозащиты;
- 4 Код обозначения местной индикации;
- 5 Код обозначения степени защиты по ГОСТ 14254-2015;
- 6 Код обозначения диапазона и погрешности измерений;
- 7 Код обозначения длины ИЭ;
- 8 Код обозначения количества датчиков температуры;
- 9 Код обозначения груза;
- 10 Код обозначения штуцера установочного;
- 11 Код обозначения монтажных частей, обеспечивающих присоединение к процессу;
- 12 Код обозначения варианта внешнего электрического присоединения;
- 13 Код обозначения наличия/отсутствия первичной поверки.

Коды обозначений приведены в руководстве по эксплуатации преобразователей.

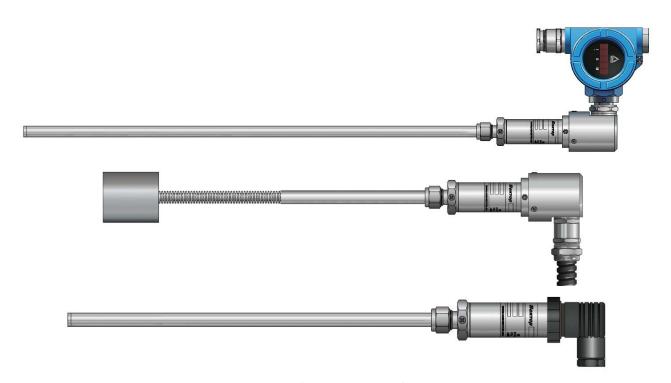


Рисунок 1 – Общий вид преобразователей

Программное обеспечение

Программное обеспечение (ПО) является встроенным и метрологически значимым. ПО предназначено для обработки измерительной информации (индикации результатов измерений на дисплее преобразователя, формирования параметров выходных сигналов, проведения диагностики) и передачи данных.

Конструкция СИ исключает возможность несанкционированного влияния на ПО СИ и измерительную информацию.

Нормирование метрологических характеристик преобразователей проведено с учетом влияния ПО.

Уровень защиты ПО и измерительной информации от преднамеренных и непреднамеренных изменений «высокий» в соответствии с Р 50.2.077-2014.

Идентификационные данные ПО приведены в таблице 1.

Таблица 1 – Идентификационные данные ПО

Наименование программного обеспечения*	Идентификацио нное наименование программного обеспечения	Номер версии (идентификаци онный номер) программного обеспечения	Цифровой идентификатор программного обеспечения (контрольная сумма исполняемого кода)	Алгоритм вычисления цифрового идентификатора программного обеспечения		
ПТМХХ-Н	PTM_H	v17	47416(B938)	CRC16		
ПТМХХ-U, ПТМХХ-RS	PTM_U	v17	15710(3D5E)	CRC16		

^{*-} ПТМХХ-Н – для преобразователей с интерфейсом связи HART (с возможностью выходного сигнала от 4 до 20 мА);

ПТМХХ-U; ПТМХХ-RS – для преобразователей с остальными интерфейсами связи.

Метрологические и технические характеристики

Таблица 2 – Метрологические характеристики

Tuomina 2 Merponorii reekire kapakrepheriikii								
Наименование характеристики	Значение							
П	от -45 до +100							
Диапазон измерений температуры*, °С	от -55 до +150							
Пределы допускаемой абсолютной погрешности измерения температуры*, °C:								
$-(-45 \le t \le +100)$ °C	$\pm 0,2;\pm 0,5$							
$-(-55 < t \le +150)$ °C	±0,3							
Диапазон формирования выходного аналогового сигнала силы постоянного								
тока, мА	от 4 до 20							
Пределы допускаемой основной приведенной погрешности к диапазону								
выходного аналогового сигнала силы постоянного тока, %	±0,1							
Пределы допускаемой дополнительной приведенной погрешности								
выходного аналогового сигнала силы постоянного тока на каждые 10 °C								
окружающей среды, %	$\pm 0,005$							
Нормальные условия измерений**:								
– температура окружающей среды ЭП, °С	от +15 до +25							
Разрешающая способность показаний измерений, °С	0,01							

^{*-} Указаны предельные значения диапазона, конкретный диапазон (значение) указан в эксплуатационной документации.

Таблица 3 – Основные технические характеристики

Наименование характеристики	Значение
Количество датчиков температуры в ИЭ, шт	от 1 до 32
Количество датчиков температуры в из, шт	1.7
	от 12 до 36
Напряжение питания постоянного тока, В*	от 24 до 36
	от 3,2 до 3,6
Рабочие условия измерений:	
– температура окружающей среды, °С	от –55 до +85**
– относительная влажность при +35 °C, %, не более	100
– атмосферное давление, кПа	от 84 до 106,7
Длина ИЭ, м, не более:	
– гибкого	35,0
– жесткого	6,0
Габаритные размеры ЭП, мм, не более:	
- с дисплеем	260×135×100
- без дисплея	168×55×38
Масса ЭП, кг, не более	2
Средний срок службы, лет	15
Среднее время наработки на отказ, ч	52000
Степень защиты по ГОСТ 14254-2015	IP65; IP66
Manager	0 Ex ia IIB T5T3 Ga X;
Маркировка взрывозащиты	Ga/Gb Ex ia/d IIB T5T3 X
	-

^{*-} Напряжение питания постоянного тока зависит от исполнения преобразователя, конкретное значение указано в эксплуатационной документации.

^{**-} Для преобразователей с выходным аналоговым сигналом силы постоянного тока.

^{**-} Указаны предельные значения диапазона, конкретный диапазон (значение) указан в эксплуатационной документации.

Знак утверждения типа

наносится на корпус ЭП любым технологическим способом, обеспечивающим четкое изображение этого знака, его стойкость к внешним воздействующим факторам, а также сохраняемость, и на титульных листах паспорта и руководства по эксплуатации типографским способом.

Комплектность средства измерений

Таблица 4 – Комплектность средства измерений

Наименование	Обозначение	Количество
Преобразователь температуры многоточечный	$\Pi T M^*$	1 шт.
Паспорт	ВГАР.405213.001 ПС	1 экз.
Руководство по эксплуатации	ВГАР.405213.001 РЭ	1 экз.
Методика поверки	ВГАР.405213.001 МП	1 экз. на партию
Монтажные части и принадлежности*	-	-
*- Определяется при заказе.		

Поверка

осуществляется по документу ВГАР.405213.001 МП «ГСИ. Преобразователи температуры многоточечные ПТМ. Методика поверки», утвержденному ЗАО КИП «МЦЭ» 17.07.2020 г.

Основные средства поверки:

- калибратор многофункциональный DPI 620, рег. № 60401-15;
- рабочий эталон 3-го разряда по ГОСТ 8.558-2009 (термометр сопротивления платиновый вибропрочный ТСПВ-1, рег. № 50256-12);
 - измеритель температуры многоканальный прецизионный МИТ 8.15, рег. № 19736-11.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых преобразователей с требуемой точностью.

Знак поверки наносится в соответствующий раздел паспорта и/или на бланк свидетельства о поверке.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к преобразователям температуры многоточечным ПТМ

ТУ 26.51.51-001-38352196-2020 Преобразователи температуры многоточечные ПТМ. Технические условия

Изготовитель

Общество с ограниченной ответственностью «ОКБ Вектор» (ООО «ОКБ Вектор»)

Адрес: 123458, г. Москва, ул. Твардовского д.8

ИНН 7714865034

Телефон/факс: +7 (495) 989-52-73 Web-сайт: https://www.okbvektor.ru

E-mail: info@okbvektor.ru

Испытательный центр

Закрытое акционерное общество Консалтинго-инжиниринговое предприятие «Метрологический центр энергоресурсов»

Адрес: 125424, г. Москва, Волоколамское шоссе, д. 88, стр.8

Аттестат аккредитации № RA.RU.311313

Телефон/факс: +7 (495) 491-78-12 Web-сайт: http://www.kip-mce.ru

E-mail: sittek@mail.ru

Аттестат аккредитации ЗАО КИП «МЦЭ» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.311313 выдан 09 октября 2015 г.