Приложение № 9 к сведениям о типах средств измерений, прилагаемым к приказу Федерального агентства по техническому регулированию и метрологии от «9» декабря 2020 г. № 2045

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «МСК Энерго» для энергоснабжения ООО «Овощи Черноземья»

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «МСК Энерго» для энергоснабжения ООО «Овощи Черноземья» (далее — АИИС КУЭ) предназначена для измерений активной и реактивной электроэнергии, автоматизированного сбора, обработки, хранения, формирования отчетных документов и передачи полученной информации заинтересованным организациям в рамках согласованного регламента.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную двухуровневую автоматизированную систему с централизованным управлением и распределенной функцией измерений.

АИИС КУЭ включает в себя следующие уровни:

1-й уровень — измерительно-информационные комплексы (ИИК), включающие в себя измерительные трансформаторы тока (ТТ), измерительные трансформаторы напряжения (ТН) и счетчики активной и реактивной электрической энергии (счетчики), вторичные измерительные цепи и технические средства приема-передачи данных.

2-й уровень — информационно-вычислительный комплекс (ИВК), включающий в себя сервер, программное обеспечение (ПО) «АльфаЦЕНТР», ПО АКУ «Энергосистема», устройство синхронизации системного времени (УССВ), автоматизированное рабочее место (АРМ), каналообразующую аппаратуру, технические средства для организации локальной вычислительной сети и разграничения прав доступа к информации.

Первичные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности, которые усредняются за период 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мощности.

Электрическая энергия, как интеграл по времени от средней за период 0,02 с мощности, вычисляется для интервалов времени 30 мин.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение мгновенных значений мощности на интервале времени усреднения 30 мин.

Цифровой сигнал с выходов счетчиков по проводным линиям связи поступает на GSM/GPRS терминал и далее по каналам связи стандарта GSM, организованным по технологии CSD, поступает на сервер, где осуществляется обработка измерительной информации, в частности вычисление электрической энергии и мощности с учетом коэффициентов трансформации ТТ и ТН, формирование и хранение поступающей информации, оформление отчетных документов.

Передача информации от сервера в программно-аппаратный комплекс АО «АТС» с электронной цифровой подписью субъекта оптового рынка электроэнергии (ОРЭ), в филиал АО «СО ЕЭС» и в другие смежные субъекты ОРЭ осуществляется по каналу связи с протоколом TCP/IP сети Internet в виде хml-файлов установленных форматов в соответствии с приложением 11.1.1 «Формат и регламент предоставления результатов измерений, состояний средств и объектов измерений в АО «АТС», АО «СО ЕЭС» и смежным субъектам» к Положению о порядке получения статуса субъекта оптового рынка и ведения реестра субъектов оптового рынка электрической энергии и мощности.

АИИС КУЭ имеет систему обеспечения единого времени (СОЕВ), которая включает в себя часы счетчиков, часы сервера и УССВ. УССВ обеспечивает передачу шкалы времени, синхронизированной по сигналам глобальных навигационных спутниковых систем с национальной шкалой координированного времени РФ UTC(SU).

Сравнение показаний часов сервера с УССВ осуществляется не реже 1 раза в час, корректировка часов сервера производится при расхождении часов сервера с УССВ на величину более ± 1 с.

Сравнение показаний часов счетчиков с часами сервера осуществляется не реже 1 раза в сутки, корректировка часов счетчиков производится при расхождении показаний часов счетчика с часами сервера на величину более ± 1 с.

Журналы событий счетчиков и сервера отображают факты коррекции времени с обязательной фиксацией времени до и после коррекции или величины коррекции времени, на которую было скорректировано устройство.

Программное обеспечение

В АИИС КУЭ используется программное обеспечение (ПО) АКУ «Энергосистема» и ПО «АльфаЦЕНТР».

ПО АКУ «Энергосистема» обеспечивает защиту измерительной информации паролями в соответствии с правами доступа. Средством защиты данных при передаче является кодирование данных, обеспечиваемое программными средствами ПО АКУ «Энергосистема». Метрологически значимая часть ПО АКУ «Энергосистема» указана в таблице 1. Уровень защиты ПО АКУ «Энергосистема» от непреднамеренных и преднамеренных изменений – «средний» в соответствии с Р 50.2.077-2014.

Уровень защиты ПО «АльфаЦЕНТР» от непреднамеренных и преднамеренных изменений предусматривает ведение журналов фиксации ошибок, фиксации изменений параметров, защиты прав пользователей и входа с помощью пароля, защиты передачи данных с помощью контрольных сумм, что соответствует уровню «средний» в соответствии с Р 50.2.077-2014.

Таблица 1 — Идентификационные данные ПО

Идентификационные данные (признаки)	Значение						
ПО «АльфаЦЕНТР»							
Идентификационное наименование ПО	ac_metrology.dll						
Номер версии (идентификационный номер) ПО	не ниже 15.08						
Цифровой идентификатор ПО	3e736b7f380863f44cc8e6f7bd211c54						
Алгоритм вычисления цифрового идентификатора	MD5						
ПО							
ПО АКУ «Энергос	истема»						
Идентификационное наименование ПО	ESS.Metrology.dll						
Номер версии (идентификационный номер) ПО	не ниже 1.0						
Цифровой идентификатор ПО	0227AA941A53447E06A5D1133239DA60						
Алгоритм вычисления цифрового идентификатора	MD5						
ПО	WIDS						

Метрологические и технические характеристики Таблица 2 — Состав измерительных каналов (ИК) АИИС КУЭ и их метрологические характеристики

	ица 2 — состав и	Измерительные компоненты				Стеристики		Метрологические характе- ристики ИК	
Но- мер ИК	Наименование точки измере- ний	TT	ТН	Счетчик	УССВ	Сервер	Вид элек- тро- энергии	Границы допускае-мой основной относительной погрешности $(\pm\delta)$, %	Границы допускаемой относительной погрешности в рабочих условиях $(\pm \delta)$, %
1	2	3	4	5	6	7	8	9	10
1	ПС 220 кВ Овощи Черно- земья, ОРУ-220 кВ, Ввод АТ-1 220 кВ	ТОГФ-220 Кл.т. 0,2S 1200/1 Рег. № 61432-15 Фазы: А; В; С	ЗНОГ-220 Кл.т. 0,2 220000/√3/100/√3 Рег. № 61431-15 Фазы: А; В; С ЗНОГ-220 Кл.т. 0,2 220000/√3/100/√3 Рег. № 61431-15 Фазы: А; В; С	A1802RAL-P4GB- DW-4 Кл.т. 0,2S/0,5 Per. № 31857-11	УССВ-2	HPE ProLiant	Актив- ная Реак- тивная	0,6 1,1	1,5 2,5
2	ПС 220 кВ Овощи Черно- земья, ОРУ-220 кВ, СВ 220 кВ	ТОГФ-220 Кл.т. 0,2S 1200/1 Рег. № 61432-15 Фазы: A; B; C	ЗНОГ-220 Кл.т. 0,2 220000/√3/100/√3 Рег. № 61431-15 Фазы: А; В; С ЗНОГ-220 Кл.т. 0,2 220000/√3/100/√3 Рег. № 61431-15 Фазы: A; В; С	A1802RAL-P4GB- DW-4 Кл.т. 0,2S/0,5 Per. № 31857-11	Per. № 54074-13	ML10Gen9	Актив- ная Реак- тивная	0,6 1,1	1,5 2,5

Продолжение таблицы 2

тродо	лжение гаолиць	D1 4							
1	2	3	4	5	6	7	8	9	10

Продолжение таблицы ?

1	2	3	4	5	6	7	8	9	10	
3	ПС 220 кВ Овощи Черно- земья, ОРУ-220 кВ, Ввод АТ-2 220 кВ	ТОГФ-220 Кл.т. 0,2S 1200/1 Рег. № 61432-15 Фазы: А; В; С	ЗНОГ-220 Кл.т. 0,2 220000/√3/100/√3 Рег. № 61431-15 Фазы: A; B; C ЗНОГ-220 Кл.т. 0,2 220000/√3/100/√3 Рег. № 61431-15 Фазы: A; B; C	A1802RAL-P4GB- DW-4 Кл.т. 0,2S/0,5 Рег. № 31857-11			Актив- ная Реак- тивная	0,6	1,5 2,5	
4	ПС 220 кВ Овощи Черно- земья, КРУН-10 кВ, 1 СШ 10 кВ, яч.109	ТЛО-10 Кл.т. 0,5 S 3000/5 Рег. № 25433-11 Фазы: A; B; C	ЗНОЛ-ЭК-10 Кл.т. 0,5 10000/√3/100/√3 Рег. № 47583-11 Фазы: A; B; C	A1802RAL-P4GB- DW-4 Кл.т. 0,2S/0,5 Рег. № 31857-11	УССВ-2 Рег. №	HPE ProLiant	Актив- ная Реак- тивная	1,1 2,3	3,0 4,7	
5	ПС 220 кВ Овощи Черно- земья, КРУН-10 кВ, 2 СШ 10 кВ, яч.209	ТЛО-10 Кл.т. 0,5 S 3000/5 Рег. № 25433-11 Фазы: A; B; C	ЗНОЛ-ЭК-10 Кл.т. 0,5 10000/√3/100/√3 Рег. № 47583-11 Фазы: A; B; C	A1802RAL-P4GB- DW-4 Кл.т. 0,2S/0,5 Рег. № 31857-11	54074-13	ML10Gen9	Актив- ная Реак- тивная	1,1 2,3	3,0 4,7	
6	ПС 220 кВ Овощи Черно- земья, КРУН-10 кВ, 3 СШ 10 кВ, яч.310	ТЛО-10 Кл.т. 0,5 S 3000/5 Рег. № 25433-11 Фазы: A; B; C	ЗНОЛ-ЭК-10 Кл.т. 0,5 10000/√3/100/√3 Рег. № 47583-11 Фазы: A; B; C	A1802RAL-P4GB- DW-4 Кл.т. 0,2S/0,5 Рег. № 31857-11				Актив- ная Реак- тивная	1,1 2,3	3,0 4,7
7	ПС 220 кВ Овощи Черно- земья, КРУН-10 кВ, 4 СШ 10 кВ, яч.402	ТЛО-10 Кл.т. 0,5S 3000/5 Рег. № 25433-11 Фазы: A; B; C	ЗНОЛ-ЭК-10 Кл.т. 0,5 10000/√3/100/√3 Рег. № 47583-11 Фазы: A; B; C	A1802RAL-P4GB- DW-4 Кл.т. 0,2S/0,5 Рег. № 31857-11			Актив- ная Реак- тивная	1,1 2,3	3,0 4,7	

времени UTC(SU)

Примечания:

- 1. В качестве характеристик погрешности ИК установлены границы допускаемой относительной погрешности ИК при доверительной вероятности, равной 0,95.
- 2. Характеристики погрешности ИК указаны для измерений активной и реактивной электроэнергии на интервале времени 30 мин.
 - 3. Погрешность в рабочих условиях указана для тока 2 % от $I_{\text{ном}}$; $\cos \varphi = 0.8$ инд.
- 4. Допускается замена ТТ, ТН и счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в таблице 2, при условии, что предприятие-владелец АИИС КУЭ не претендует на улучшение указанных в таблице 2 метрологических характеристик. Допускается замена УССВ на аналогичное утвержденного типа, а также замена сервера без изменения используемого ПО (при условии сохранения цифрового идентификатора ПО). Замена оформляется актом в установленном собственником АИИС КУЭ порядке. Акт хранится совместно с настоящим описанием типа АИИС КУЭ как его неотъемлемая часть.

Таблица 3 – Основные технические характеристики ИК

Таолица 3 — Основные технические характеристики ик	2,,,,,,,,,,,
Наименование характеристики	Значение
1	2
Количество ИК	7
Нормальные условия:	
параметры сети:	
напряжение, % от Ином	от 95 до 105
ток, % от Іном	от 1 до 120
коэффициент мощности соѕф	0,9
частота, Гц	от 49,8 до 50,2
температура окружающей среды, °С	от +21 до +25
Условия эксплуатации:	
параметры сети:	
напряжение, % от Ином	от 90 до 110
ток, % от Іном	от 1 до 120
коэффициент мощности соѕф	от 0,5 до 1,0
частота, Гц	от 49,6 до 50,4
температура окружающей среды в месте расположения ТТ и ТН, °С	от -40 до +40
температура окружающей среды в месте расположения счетчиков,	
$^{\circ}\mathrm{C}$	от +5 до +40
температура окружающей среды в месте расположения сервера, °С	от +10 до +30
Надежность применяемых в АИИС КУЭ компонентов:	
для счетчиков:	
среднее время наработки на отказ, ч, не менее	120000
среднее время восстановления работоспособности, ч	2
для УССВ:	
среднее время наработки на отказ, ч, не менее	74500
среднее время восстановления работоспособности, ч	2
для сервера:	
среднее время наработки на отказ, ч, не менее	100000
среднее время восстановления работоспособности, ч	1
Глубина хранения информации:	
для счетчиков:	
тридцатиминутный профиль нагрузки в двух направлениях, сут,	
не менее	180
при отключении питания, лет, не менее	30

Продолжение таблицы 3

1	2
для сервера:	
хранение результатов измерений и информации состояний	
средств измерений, лет, не менее	3,5

Надежность системных решений:

защита от кратковременных сбоев питания сервера с помощью источника бесперебойного питания;

резервирование каналов связи: информация о результатах измерений может передаваться в организации-участники оптового рынка электроэнергии по электронной почте.

В журналах событий фиксируются факты:

журнал счетчиков:

параметрирования;

пропадания напряжения;

коррекции времени в счетчиках.

журнал сервера:

параметрирования;

пропадания напряжения;

коррекции времени в счетчиках и сервере;

пропадание и восстановление связи со счетчиками.

Защищенность применяемых компонентов:

механическая защита от несанкционированного доступа и пломбирование:

счетчиков электрической энергии;

промежуточных клеммников вторичных цепей напряжения;

испытательной коробки;

сервера.

защита на программном уровне информации при хранении, передаче, параметрировании:

счетчиков электрической энергии;

сервера.

Возможность коррекции времени в:

счетчиках электрической энергии (функция автоматизирована);

сервере (функция автоматизирована).

Возможность сбора информации:

о состоянии средств измерений;

о результатах измерений (функция автоматизирована).

Цикличность:

измерений 30 мин (функция автоматизирована);

сбора не реже одного раза в сутки (функция автоматизирована).

Знак утверждения типа

наносится на титульные листы эксплуатационной документации на АИИС КУЭ типографским способом.

Комплектность средства измерений

В комплект поставки входит техническая документация на АИИС КУЭ и на комплектующие средства измерений.

Комплектность АИИС КУЭ представлена в таблице 4.

Таблица 4 — Комплектность АИИС КУЭ

Наименование	Обозначение	Количество, шт./экз.
Трансформаторы тока	ТОГФ-220	9
Трансформаторы тока	ТЛО-10	12
Трансформаторы напряжения	3НОГ-220	6
Трансформаторы напряжения	ЗНОЛ-ЭК-10	12
Счетчики электрической энергии трехфазные многофункциональные	Альфа А1800	7
Устройства синхронизации системного времени	УССВ-2	1
Сервер	HPE ProLiant ML10Gen9	1
Методика поверки	МП ЭПР-295-2020	1
Паспорт-формуляр	ЭНСТ.411711.238.ФО	1

Поверка

осуществляется по документу МП ЭПР-295-2020 «ГСИ. Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «МСК Энерго» для энергоснабжения ООО «Овощи Черноземья». Методика поверки», утвержденному ООО «ЭнергоПромРесурс» 15.10.2020 г.

Основные средства поверки:

- трансформаторов тока по ГОСТ 8.217-2003 «ГСИ. Трансформаторы тока. Методика поверки»;
- трансформаторов напряжения по ГОСТ 8.216-2011 «ГСИ. Трансформаторы напряжения. Методика поверки»;
- счетчиков Альфа A1800 по документу ДЯИМ.411152.018 МП «Счетчики электрической энергии трехфазные многофункциональные Альфа A1800. Методика поверки», утвержденному ГЦИ СИ ФГУП «ВНИИМС» в 2011 г. и документу ДЯИМ.411152.018 МП «Счетчики электрической энергии трехфазные многофункциональные Альфа A1800. Дополнение к методике поверки», утвержденному в 2012 г.;
- УССВ-2 по документу МП-РТ-1906-2013 (ДЯИМ.468213.001МП) «Устройства синхронизации системного времени УССВ-2. Методика поверки», утвержденному руководителем ГЦИ СИ ФБУ «Ростест-Москва» 17.05.2013 г.;
- в соответствии с документами на поверку средств измерений, входящих в состав АИИС КУЭ;
- блок коррекции времени ЭНКС-2 (регистрационный номер в Федеральном информационном фонде 37328-15);
- анализатор количества и показателей качества электрической энергии AR.5L (регистрационный номер в Федеральном информационном фонде 44131-10);
- вольтамперфазометр ПАРМА ВАФ&-А (регистрационный номер в Федеральном информационном фонде 22029-10).

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке АИИС КУЭ.

Сведения о методиках (методах) измерений

приведены в документе «Методика измерений электрической энергии с использованием АИИС КУЭ ООО «МСК Энерго» для энергоснабжения ООО «Овощи Черноземья», аттестованном ООО «ЭнергоПромРесурс», аттестат аккредитации № RA.RU.312078 от $07.02.2017 \, \Gamma$.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ООО «МСК Энерго» для энергоснабжения ООО «Овощи Черноземья»

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения

Изготовитель

Общество с ограниченной ответственностью «Энергосистемы» (ООО «Энергосистемы»)

ИНН 3328498209

Адрес: 600028, г. Владимир, ул. Сурикова, д. 10 «А», помещение 10

Телефон (факс): (4922) 60-23-22

Web-сайт: ensys.su E-mail: post@ensys.su

Испытательный центр

Общество с ограниченной ответственностью «ЭнергоПромРесурс» (ООО «ЭнергоПромРесурс»)

Адрес: 143443, Московская обл., г. Красногорск, мкр. Опалиха, ул. Ново-Никольская, д. 57, офис 19

Телефон: (495) 380-37-61

E-mail: energopromresurs2016@gmail.com

Аттестат аккредитации ООО «ЭнергоПромРесурс» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.312047 от 26.01.2017 г.