Приложение № 2 к сведениям о типах средств измерений, прилагаемым к приказу Федерального агентства по техническому регулированию и метрологии от «23» декабря 2020 г. № 2174

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ПАО «Транснефть» в части АО «Транснефть-Верхняя Волга» по объекту «Подводный переход р. Судогда, 47 км МНПП «Новки-Рязань»

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ПАО «Транснефть» в части АО «Транснефть-Верхняя Волга» по объекту «Подводный переход р. Судогда, 47 км МНПП «Новки-Рязань» (далее – АИИС КУЭ), предназначена для измерений активной и реактивной электрической энергии и мощности, потребленной за установленные интервалы времени технологическим объектом, сбора, обработки, хранения, формирования отчетных документов и передачи полученной информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, двухуровневую автоматизированную систему с централизованным управлением и распределением функций измерения.

АИИС КУЭ включает в себя следующие уровни:

1-й уровень — измерительно-информационные комплексы (далее — ИИК), включающие в себя измерительные трансформаторы тока (далее — TT), трансформаторы напряжения (далее — TH), счетчики активной и реактивной электроэнергии (далее — счётчики), вторичные измерительные цепи и технические средства приема-передачи данных. Метрологические и технические характеристики измерительных компонентов АИИС КУЭ приведены в таблицах 2-4.

2-й уровень – информационно-вычислительный комплекс (далее – ИВК), включающий в себя каналообразующую аппаратуру, сервер баз данных (далее – БД) АИИС КУЭ, сервер опроса, сервер приложений, сервер резервного копирования, автоматизированные рабочие места персонала (далее – АРМ), серверы синхронизации времени ССВ-1Г (регистрационный номер в федеральном информационном фонде по обеспечению единства измерений (далее – Рег. №) 39485-08) и программное обеспечение (далее – ПО) ПК «Энергосфера».

Первичные фазные токи и напряжения преобразуются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие электронного счетчика электрической энергии В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности без учета коэффициентов трансформации. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мощности.

Электрическая энергия, как интеграл по времени от средней за период 0,02 с мощности, вычисляется для интервалов времени 30 мин.

На втором уровне системы выполняется обработка измерительной информации, в частности, вычисление электроэнергии и мощности с учетом коэффициентов трансформации ТТ и ТН, формирование и хранение поступающей информации, оформление отчетных документов, отображение информации на мониторах АРМ и передача данных в организации —

участники оптового рынка электрической энергии и мощности через каналы связи.

Данные хранятся на сервере входы БД. Данные с сервера БД передаются на APM, установленные в соответствующих службах, по сети Ethernet. Полный перечень информации, получаемой на APM, определяется техническими характеристиками многофункциональных счетчиков и уровнем доступа APM к базе данных и сервера БД. ИВК является единым центром сбора и обработки данных всех АИИС КУЭ организаций системы ПАО «Транснефть».

Система осуществляет обмен данными между АИИС КУЭ смежных субъектов по каналам связи Internet в формате xml-файлов.

Данные по группам точек поставки в организации-участники ОРЭ и РРЭ, в том числе АО «АТС», АО «СО ЕЭС» и смежным субъектам, передаются с ИВК с учетом агрегации данных по всем АИИС КУЭ ОАО «АК «Транснефть» (Рег. № 54083-13) с учетом полученных данных по точкам измерений, входящим в настоящую АИИС КУЭ и АИИС КУЭ смежных субъектов в виде хml-файлов в соответствии с Приложением 11.1.1 к Положению о порядке получения статуса субъекта оптового рынка и ведения реестра субъектов оптового рынка, в том числе с использованием ЭЦП субъекта рынка.

АИИС КУЭ имеет систему обеспечения единого времени (далее – СОЕВ). СОЕВ функционирует на всех уровнях системы (счетчиков электроэнергии, сервера ИВК). Синхронизация часов сервера ИВК обеспечивается двумя (основным и резервным) серверами синхронизации времени ССВ-1Г, входящими в состав ЦСОД. ССВ-1Г непрерывно обрабатывает данные, поступающие от антенного блока и содержащие время спутниковой навигационной системы ГЛОНАСС/GPS.

Информация о точном времени распространяется устройством в сети TCP/IP согласно протоколу NTP (Network Time Protocol). ССВ-1Г формирует сетевые пакеты, содержащие оцифрованную метку всемирного координированного времени, полученного по сигналам глобальной навигационной спутниковой системы ГЛОНАСС/GPS, с учетом задержки на прием пакета и выдачу ответного отклика. Сервер синхронизации времени обеспечивает постоянное и непрерывное обновление данных на сервере ИВК. Резервный сервер синхронизации ИВК используется при выходе из строя основного сервера.

Сличение часов счетчиков с часами сервераИВК происходит при каждом обращении к счетчикам, но не реже одного раза в сутки. Синхронизация часов счетчиков проводится при расхождении часов счетчика и сервера ИВК более чем на ± 1 с.

Журналы событий счетчиков и сервера ИВК отображают факты коррекции времени с обязательной фиксацией времени до и после коррекции или величины коррекции времени, на которую было скорректировано устройство.

Программное обеспечение

В АИИС КУЭ используется ПО ПК «Энергосфера». Метрологически значимая часть содержится в модуле, указанном в таблице 1. ПО ПК «Энергосфера» обеспечивает защиту программного обеспечения и измерительной информации паролями в соответствии с правами доступа. Средством защиты данных при передаче является кодирование данных, обеспечиваемое программными средствами ПО ПК «Энергосфера».

Метрологически значимой частью специализированного программного обеспечения АИИС КУЭ является библиотека pso_metr.dll. Данная библиотека выполняет функции синхронизации, математической обработки информации, поступающей от приборов учета, и является неотъемлемой частью АИИС КУЭ.

Таблица 1 – Идентификационные данные ПО

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	ПК «Энергосфера»
идентификационное наименование по	Библиотека pso_metr.dll
Номер версии (идентификационный номер)	1.1.1.1
ПО	1.1.1.1
Цифровой идентификатор ПО (контрольная	CBEB6F6CA69318BED976E08A2BB7814B
сумма исполняемого кода)	CDED01-0CA09318DED9/0E08A2DD/814D

Алгоритм вычисления цифрового идентификатора ПО	MD5

ПО ПК «Энергосфера» не влияет на метрологические характеристики ИК АИИС КУЭ, указанные в таблице 2.

Уровень защиты ПО от непреднамеренных и преднамеренных изменений - «высокий» в соответствии с Р 50.2.077-2014.

Метрологические и технические характеристики

Состав измерительных каналов (далее – ИК) и их основные метрологические и технические характеристики приведены в таблицах 2-4.

Таблица 2 – Состав ИК АИИС КУЭ

]	Номер и наименование ИК	TT	ТН	Счетчик	Сервер синхронизации времени/ Сервер БД
1	ВЛ-10 кВ фид. 1004 п/ст «Воровского», оп. №176/1/1	ТЛО-10 Ктт = 50/5 Кл. т. = 0,5S Рег. № 25433-11	ЗНОЛП-ЭК Ктн 10000√3/100√3 Кл. т. = 0,5 Рег. № 68841-17	Меркурий 234 ARTM2-00 PB.G Кл. т. = 0,2S/0,5 Per. № 48266-11	2 3948: 460c (L 460c
2	ВЛ-10 кВ фид. 1001 п/ст «Вашутино», оп. №198/2/1	ТЛО-10 Ктт = 50/5 Кл. т. = 0,5S Рег. № 25433-11	ЗНОЛП-ЭК Ктн 10000√3/100√3 Кл. т. = 0,5 Рег. № 68841-17	Меркурий 234 ARTM2-00 PBR.G Кл. т. = 0,2S/0,5 Per. № 75755-19	CCB-1Γ Per. № HP ProLiant BL HP ProLiant B

Примечания

- 1 Допускается замена ТТ, ТН и счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в таблице 2, при условии, что предприятие-владелец АИИС КУЭ не претендует на улучшение указанных в таблице 3 метрологических характеристик.
- 2 Допускается замена серверов синхронизации времени на аналогичные утвержденных типов.
- 3 Замена оформляется техническим актом в установленном на АО «Транснефть-Верхняя Волга» порядке, все изменения вносятся в эксплуатационные документы. Технический акт хранится совместно с эксплуатационными документами на АИИС КУЭ как их неотъемлемая часть.
- 4 Кл. т. класс точности, Ктн коэффициент трансформации трансформаторов напряжения, Ктт коэффициент трансформации трансформаторов тока.

Таблица 3 – Основные метрологические характеристики ИК АИИС КУЭ

,		_	
Номера ИК	Вид электроэнергии	Границы основной	Границы погрешности в
помера итк		погрешности $(\pm \delta)$, %	рабочих условиях $(\pm \delta)$, %
1.2	Активная	1,22	1,38
1,2	Реактивная	1,84	2,30
Пределы допускаемой погрешности СОЕВ АИИС КУЭ, с		±5	

Примечания:

- 1 Погрешность в рабочих условиях указана при температуре окружающего воздуха в месте расположения счетчиков электроэнергии от плюс 5 до плюс 35°C для ИК №№ 1 2, при $\cos \phi$ =0,8, 0,2 $I_{\rm H}$ $\!\leq$ I< $I_{\rm H}$.
- 2 Характеристики погрешности ИК даны для измерения электроэнергии и средней мощности (получасовой).

 $3~{\rm B}$ качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0.95

Основные технические характеристики ИК приведены в таблице 4.

Таблица 4 – Основные технические характеристики ИК

Таблица 4 – Основные технические характеристики ИК				
Наименование характеристики	Значение			
Количество измерительных каналов	2			
Нормальные условия:				
параметры сети:				
 напряжение, % от U_{ном} 	от 99 до 101			
$_{-}$ Tok, $\%$ ot I_{hom}	от 100∙до 120			
– частота, Гц	от 49,85 до 50,15			
 коэффициент мощности соѕф 	0,8			
температура окружающей среды °C:	от +21 до +25			
Условия эксплуатации:				
параметры сети:				
 напряжение, % от U_{ном} 	от 90 до 110			
$^-$ ток, $\%$ от $\mathrm{I}_{\mathtt{HOM}}$	от 2 до 120			
– частота, Гц	от 49,6 до 50,4			
коэффициент мощности.	от $0,5$ _{инд} до $0,8$, _{емк}			
диапазон рабочих температур окружающей среды, °С:				
для ТТ и ТН	от -45 до +40			
для счетчиков	от -45 до +75			
для сервера	от +10 до +35			
Надежность применяемых в АИИС КУЭ компонентов:				
счётчики электрической энергии:				
- среднее время наработки на отказ, ч, не менее	220000			
– среднее время восстановления работоспособности, ч, не более	2			
CCB-1Γ:				
– среднее время наработки на отказ, ч, не менее	15000			
- среднее время восстановления работоспособности, ч	2			
сервер HP ProLiant BL 460c Gen8:				
– среднее время наработки на отказ Т, ч, не менее	261163			
- среднее время восстановления работоспособности tв не более, ч;	0,5			
сервер HP ProLiant BL 460c G6:				
– среднее время наработки на отказ Т, ч, не менее	264599			
 среднее время восстановления работоспособности tв не более, ч. 	0,5			
Глубина хранения информации				
счётчики электрической энергии:				
 тридцатиминутный профиль нагрузки в двух направлениях, сут, 				
не менее	170			
 при отключении питания, лет, не менее 	30			
сервер:				
 хранение результатов измерений, состояние объектов и средств 				
измерений, лет, не менее	3,5			

Надежность системных решений:

- резервирование питания сервера с помощью источника бесперебойного питания и устройства ABP;
- резервирование каналов связи: информация о результатах измерений может передаваться с помощью электронной почты и сотовой связи;

в журналах событий фиксируются факты:

- журнал счетчика:
- параметрирования;
- пропадания и восстановления напряжения;
- коррекции времени в счетчике;
- параметрирования;
- коррекции времени в счетчике и в сервере;
- пропадание и восстановление связи со счетчиком.

Защищенность применяемых компонентов:

наличие механической защиты от несанкционированного доступа и пломбирование:

- счетчика;
- промежуточных клеммников вторичных цепей напряжения;
- испытательной коробки;
- сервера БД;

наличие защиты на программном уровне:

- пароль на счетчике;
- пароли на сервере, предусматривающие разграничение прав доступа измерительным данным для различных групп пользователей.

Возможность коррекции времени в:

- счетчиках (функция автоматизирована).

Возможность сбора информации:

- о результатах измерений (функция автоматизирована);
- о состоянии средств измерений.

Цикличность:

- измерений приращений электроэнергии на интервалах 30 минут (функция автоматизирована);
- сбора результатов измерений не реже одного раза в сутки (функция автоматизирована)

Знак утверждения типа

наносится на титульные листы эксплуатационной документации на АИИС КУЭ типографским способом.

Комплектность средства измерений

Комплектность АИИС КУЭ представлена в таблице 5.

Таблица 5 – Комплектность АИИС КУЭ.

Наименование	Тип/обозначение	Кол-во, шт./экз.
Трансформатор тока	ТЛО-10	6
Трансформатор напряжения	знолп-эк	6
Счётчики электрической энергии	Меркурий 234	1
трёхфазные многофункциональные	ARTM2-00 PB.G	1
Счётчики электрической энергии	Меркурий 234	1
трёхфазные многофункциональные	ARTM2-00 PBR.G	1
Сервер синхронизации времени	CCB-1Γ	2
Сервер БД	HP ProLiant BL 460c	2
Программное обеспечение	ПК «Энергосфера»	1
Методика поверки	МП 032-2020	1
Формуляр	ИЦЭ 1283РД-20.04.ФО	1
В имовонотво но оменнуютелии	ИЦЭ 1299.РД-20.04.АИИС	1
Руководство по эксплуатации	КУЭ.ЭД.РЭ	

Поверка

осуществляется в соответствии с документом МП 032-2020 «ГСИ. Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ПАО «Транснефть» в части АО «Транснефть-Верхняя Волга» по объекту «Подводный переход р. Судогда, 47 км МНПП «Новки-Рязань». Методика поверки», утвержденным ООО «Спецэнергопроект» 03.06.2020 г.

Основные средства поверки:

- трансформаторов тока в соответствии с ГОСТ 8.217-2003 «ГСИ. Трансформаторы тока. Методика поверки»;
- трансформаторов напряжения в соответствии с ГОСТ 8.216-2011 «ГСИ. Трансформаторы напряжения. Методика поверки» и/или МИ 2845-2003 «Измерительные трансформаторы напряжения $6/\sqrt{3}\dots35$ кВ. Методика поверки на месте эксплуатации»;
- счётчики электрической энергии Меркурий 234 по документу АВЛГ.411152.033 РЭ1 «Счётчики электрической энергии статические трехфазные «Меркурий 234». Руководство по эксплуатации. Приложение Γ . Методика поверки» с изменением № 2, утвержденному ФБУ «Нижегородский ЦСМ» 28.08.2017 г.;
- ССВ-1 Γ по документу «Источники частоты и времени/ серверы синхронизации времени ССВ-1 Γ . Методика поверки», ЛЖАР.468150.003-08 МП, утвержденным Γ ЦИ СИ «Связь Γ ест» Φ Γ УП ЦНИИС в ноябре 2008 Γ .;
- Меркурий 234 по документу РЭ1 26.51.63.130-061-89558048-2018 с изменением №1 «Счётчики электрической энергии статические «Меркурий 204», «Меркурий 208», «Мегсигу 204», «Мегсигу 208», «Меркурий 234», «Меркурий 238», «Мегсигу 234», «Мегсигу 238». Методика поверки», утвеждённому ООО «ИЦРМ» $10.04.2020~\Gamma$.;
 - блок коррекции времени ЭНКС-2, Рег. № 37328-15.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке в виде наклейки со штрих-кодом и (или) оттиском клейма поверителя.

Сведения о методиках (методах) измерений

приведены в документе «Методика измерений электрической энергии и мощности с использованием системы автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ПАО «Транснефть» в части АО «Транснефть-Верхняя Волга» по объекту «Подводный переход р. Судогда, 47 км МНПП «Новки-Рязань», аттестованном ООО «Спецэнергопроект», аттестат об аккредитации № RA.RU.312236 от 20.07.2017 г.

Нормативные документы, устанавливающие требования к АИИС КУЭ

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия

ГОСТ 34.601-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания

Изготовитель

Акционерное общество «Транснефть – Верхняя Волга»

(АО «Транснефть – Верхняя Волга»)

ИНН: 5260900725

Адрес: 603950, г. Нижний Новгород, переулок Гранитный, дом 4/1 ГСП 1504

Телефон: +7 (831) 438-22-00 Факс: +7 (831) 438-22-05

Заявитель

Общество с ограниченной ответственностью «Инженерный центр «Энергия»

(ООО «ИЦ «Энергия») ИНН: 3702062476

Адрес: 195009, г. Санкт-Петербург, Свердловская набережная, д. 14/2 литера А,

помещение 11-Н

Телефон: +7 (812) 245-07-60 Факс: +7 (812) 245-07-60

Испытательный центр

Общество с ограниченной ответственностью «Спецэнергопроект»

(ООО «Спецэнергопроект»)

ИНН: 7722844084

Адрес: 115419, г. Москва, ул. Орджоникидзе, д. 11, стр. 3, этаж 4, помещ. І, комн. 6, 7

Телефон: +7 (495) 410-28-81

E-mail: gd.spetcenergo@gmail.com

Аттестат аккредитации ООО «Спецэнергопроект» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.312429 от 30.01.2018 г.