Приложение № 9 к сведениям о типах средств измерений, прилагаемым к приказу Федерального агентства по техническому регулированию и метрологии от «31» декабря 2020 г. № 2342

Лист № 1 Всего листов 6

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии АО «Васильевский рудник»

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии АО «Васильевский рудник» (далее по тексту - АИИС КУЭ) предназначена для измерений активной и реактивной электроэнергии, сбора, обработки, хранения, формирования отчетных документов и передачи полученной информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, двухуровневую автоматизированную систему с централизованным управлением и распределенной функцией измерения.

АИИС КУЭ включает в себя следующие уровни:

1-й уровень – измерительно-информационные комплексы (ИИК), которые включают в себя трансформаторы тока (ТТ), трансформаторы напряжения (ТН), счетчики активной и реактивной электроэнергии, вторичные измерительные цепи и технические средства приемапередачи данных;

2-й уровень — информационно-вычислительный комплекс (ИВК), включающий в себя сервер баз данных (СБД) НР ProLiant DL360, устройство синхронизации времени УСВ-3 (УСВ), локально-вычислительную сеть, программное обеспечение (ПО) ПК «Энергосфера», автоматизированные рабочие места, технические средства приема-передачи данных, каналы связи для обеспечения информационного взаимодействия между уровнями системы, технические средства для обеспечения локальной вычислительной сети (ЛВС) и разграничения доступа к информации.

Первичные токи и напряжения преобразуются измерительными трансформаторами в аналоговые унифицированные сигналы, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности, которые усредняются за период 0,02 с. Измерительная информация на выходе счетчика без учета коэффициента трансформации:

- активная и реактивная электрическая энергия, как интеграл по времени от средней за период 0.02 с активной и реактивной мощности, соответственно, вычисляемая для интервалов времени 30 мин;
- средняя на интервале времени 30 мин активная (реактивная) электрическая мошность.

Результаты измерений для каждого интервала измерения и 30-минутные данные коммерческого учета соотнесены с текущим московским временем. Результаты измерений передаются в целых числах к $B\tau$ ·ч.

Цифровой сигнал с выходов счетчиков при помощи технических средств приемапередачи данных поступает на входы ИВК, где осуществляется вычисление электрической энергии и мощности с учетом коэффициентов трансформации ТТ и ТН, хранение измерительной информации и передача измерительной информации.

ИВК АИИС КУЭ с периодичностью опроса не реже 1 раза в сутки опрашивает счетчики электроэнергии и считывает с них тридцатиминутный профиль мощности для каждого канала учета и журналы событий.

ИВК АИИС КУЭ раз в сутки формирует отчеты в формате XML, подписывает электронной цифровой подписью (ЭЦП) и отправляет по выделенному каналу связи сети Интернет в АО «АТС», региональному филиалу АО «СО ЕЭС» и всем заинтересованным субъектам оптового рынка электроэнергии и мощности (ОРЭМ).

АИИС КУЭ имеет систему обеспечения единого времени (СОЕВ). СОЕВ предусматривают поддержание шкалы всемирного координированного времени на всех уровнях АИИС КУЭ (ИИК, ИВК). В состав СОЕВ входит УСВ, синхронизирующее собственную шкалу времени со шкалой всемирного координированного времени UTC (SU) по сигналам навигационных систем ГЛОНАСС.

Сервер АИИС КУЭ автоматически не реже 1 раза в сутки сравнивает собственную шкалу времени со шкалой времени УСВ, синхронизация шкалы времени сервера АИИС КУЭ выполняется при обнаружении расхождения на величину 0,1 сек и более. Сравнение шкалы времени счетчиков со шкалой времени сервера происходит не реже 1 раза в сутки, синхронизация шкалы времени счетчиков выполняется при расхождении со шкалой времени сервера на величину ± 2 сек и более.

Журналы событий счетчика электрической энергии, сервера отражают: факты коррекции времени с обязательной фиксацией времени (дата, часы, минуты, секунды) до и после коррекции и (или) величины коррекции времени, на которую было скорректировано устройство.

Программное обеспечение

В АИИС КУЭ используется ПК «Энергосфера» (версия не ниже 7.0). Уровень защиты ПО от непреднамеренных и преднамеренных изменений соответствует уровню - «высокий» в соответствии Р 50.2.077-2014. Идентификационные признаки ПО приведены в таблице 1.

Тоблица	1	Илентификапионные признаки	ПО
таолина	1 —	илснишиканионные признаки	$\mathbf{H}\mathbf{O}$

Идентификационные признаки	Значение	
Идентификационное наименование модуля ПО	pso_metr.dll	
Номер версии (идентификационный номер) модуля ПО	1.1.1.1	
Цифровой идентификатор модуля ПО	cbeb6f6ca69318bed976e08a2bb7814b	
Алгоритм вычисления цифрового идентификатора модуля ПО	MD5	

Метрологические и технические характеристики

Состав измерительных каналов приведен в таблице 2.

Таблица 2 - Состав измерительных каналов АИИС КУЭ

718	Наименование	Состав измерительного канала			
	измерительного канала	Трансформатор тока	Трансформатор напряжения	Счетчик электрической энергии	УСВ/Серв ер
1	2	3	4	5	6
1	ПС 35 кВ Васильки (ПС №41), КРУ- 1 35 кВ, 1 СШ 35 кВ, яч.3	GI-36 200/5 KT 0,5 Per. № 28402-04	GZ-36 35000/100 KT 0,5 Per. № 28405- 04	ПСЧ-4ТМ.05МК.00 КТ 0,5S/1,0 Рег. № 50460-18 ПСЧ-4ТМ.05МК.00 КТ 0,5S/1,0 Рег. № 50460-18	УСВ-3, peг.№ 64242-16 / HP ProLiant DL360
2	ПС 35 кВ Васильки (ПС №41), КРУ- 2 35 кВ, 2 СШ 35 кВ, яч.6	GI-36 200/5, KT 0,5 Per. № 28402-04	GZ-36 35000/100 KT 0,5 Per. № 28405-04	ПСЧ-4ТМ.05МК.00 КТ 0,5S/1,0 Рег. № 50460-18 ПСЧ-4ТМ.05МК.00 КТ 0,5S/1,0 Рег. № 50460-18	YCB-3. per. № 64242- 16 / HP ProLiant DL360

Примечания:

- 1 Допускается замена ТТ, ТН и счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в таблице 2, при условии, что Предприятие-владелец АИИС КУЭ не претендует на улучшение указанных в таблице 2 метрологических характеристик.
- 2 Допускается замена УСВ на аналогичные утвержденных типов.
- 3 Замена оформляется техническим актом в установленном на Предприятии-владельце АИИС КУЭ порядке, вносят изменения в эксплуатационные документы. Технический акт хранится совместно с эксплуатационными документами на АИИС КУЭ, как их неотъемлемая часть.

Таблица 3 – Основные метрологические характеристики ИК

Номер ИК	Вид электрической энергии	Границы основной погрешности ±δ, %	Границы погрешности в рабочих условиях $\pm \delta$, %
1, 2	Активная Реактивная	1,3 2,0	3,2 5,2
Пределы абсолютной погрешности синхронизации компонентов СОЕВ АИИС КУЭ к шкале координированного времени UTC (SU), (±) с			5
П			

Примечания:

- 1 Характеристики погрешности ИК даны для измерений электроэнергии (получасовая).
- 2~B качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности P=0.95
- 3 Границы погрешности результатов измерений приведены для $\cos \varphi = 0.8$, токе TT, равном 100 % от Іном для нормальных условий и при $\cos \varphi = 0.8$, токе TT, равном 5 % от Іном для рабочих условий, при температуре окружающего воздуха в месте расположения счетчиков от +5 до +35 °C.

0

Таблица 4 – Основные технические характеристики АИИС КУЭ

Наименование характеристики	Значение
1	2
Количество измерительных каналов	2
Нормальные условия	
параметры сети:	
- напряжение, % от U _{ном}	от 98 до 102
- Tok, $\%$ ot I_{hom}	от 100 до 120
- коэффициент мощности	0,8
- температура окружающей среды для счетчиков, °C	от +21 до +25
- частота, Гц	50
Условия эксплуатации	
параметры сети:	
- напряжение, % от U _{ном}	от 90 до 110
- ток, % от I _{ном}	от 1 до 120
- коэффициент мощности соsф (sinф)	от 0,5 инд. до 1 емк
- температура окружающей среды для ТТ и ТН, °С	от -40 до +40
- температура окружающей среды для счетчиков, °C	эт то до то
ПСЧ-4ТМ.05МК	от -40 до +60
- температура окружающей среды для сервера, °C	от +10 до + 30
- атмосферное давление, кПа	от 80,0 до 106,7
- относительная влажность, %, не более	98
- частота, Гц	от 49,6 до 50,4
Надежность применяемых в АИИС КУЭ компонентов	
Счетчики:	
- среднее время наработки на отказ, ч, не менее	
ПСЧ-4ТМ.05МК	165000
УСВ-3	
- среднее время наработки на отказ, ч, не менее	45000
Сервер БД:	
- среднее время наработки на отказ, ч, не менее	100000
- среднее время восстановления работоспособности, ч	1
Глубина хранения информации	
Счетчики:	
ПСЧ-4ТМ.05МК	
-каждого массива профиля при времени интегрирования 30	
минут, сут	113
Сервер БД:	
- хранение результатов измерений и информации	
состояний средств измерений, лет, не менее	3,5

Надежность системных решений:

- защита от кратковременных сбоев питания сервера с помощью источника бесперебойного питания;
- резервирование каналов связи: информация о результатах измерений может передаваться в организации—участники ОРЭМ с помощью электронной почты и сотовой связи.

В журналах событий фиксируются факты:

- в журнале событий счетчика:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике.

Защищенность применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
 - электросчетчика;
 - промежуточных клеммников вторичных цепей напряжения;
 - испытательной коробки;
 - сервера БД;
- защита на программном уровне:
 - результатов измерений (при передаче, возможность использования цифровой подписи);
 - установка пароля на счетчик;
 - установка пароля на сервер БД.

Знак утверждения типа

наносится на титульные листы эксплуатационной документации на АИИС КУЭ.

Комплектность средства измерений

Комплектность АИИС КУЭ представлена в таблице 5.

Таблица 5 - Комплектность АИИС КУЭ

Наименование	Обозначение	Количество, шт.		
Трансформатор тока	GI-36	6		
Трансформатор напряжения	GZ-36	4		
Счетчик электрической энергии	ПСЧ-4ТМ.05МК.00	4		
Устройство синхронизации времени	УСВ-3	1		
Основной сервер	HP ProLiant DL360	1		
Документация				
Методика поверки	MΠ 26.51.43/16/20	1		
Формуляр	ФО 26.51.43/16/20	1		

Поверка

осуществляется по документу МП 26.51.43/16/20. Государственная система обеспечения единства измерений. «Система автоматизированная информационно-измерительная коммерческого учета электроэнергии АО «Васильевский рудник». Методика поверки», утвержденному ФБУ «Самарский ЦСМ» 22.05.2020 г.

Основные средства поверки:

- ТТ по ГОСТ 8.217-2003;
- ТН по МИ 2845-2003, МИ 2925-2005 и/или по ГОСТ 8.216-2011;
- счетчик ПСЧ-4ТМ.05МК (регистрационный номер в Федеральном информационном фонде по обеспечению единства измерений 50460-18) по документу «Счетчик электрической энергии многофункциональный ПСЧ-4ТМ.05МК. Руководство по эксплуатации. Часть 2. Методика поверки» ИЛГШ.411152.167РЭ1, утвержденному ГЦИ СИ ФГУ «Нижегородский ЦСМ» 28.04.2016;
- устройство синхронизации времени УСВ-3 (регистрационный номер в Федеральном информационном фонде по обеспечению единства измерений 64242-16) по документу РТ-МП-3124-441-2016 «Устройства синхронизации времени УСВ-3. Методика поверки», утвержденному ФБУ «Ростест-Москва» 23.03.2016 г;
- радиочасы МИР РЧ-02 (регистрационный номер в Федеральном информационном фонде по обеспечению единства измерений 46656-11) по документу «Радиочасы МИР РЧ-02. Руководство по эксплуатации». М09.117.00. 000РЭ. Раздел 8. Поверка, утвержденному ООО «НПО «МИР»;

- мультиметр «Ресурс-ПЭ» (регистрационный номер в Федеральном информационном фонде по обеспечению единства измерений 33750-07) по документу - «Мультиметр «Ресурс-ПЭ». Методика поверки», согласованному ГЦИ СИ ФГУ «Пензенский ЦСМ» в декабре 2006 г.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик, поверяемых СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке.

Сведения о методиках (методах) измерений

приведены в документе «Методика (метод) измерений электрической энергии с использованием системы автоматизированной информационно-измерительной коммерческого учета электроэнергии АО «Васильевский рудник». МВИ 26.51.43/16/20, аттестованной ФБУ «Самарский ЦСМ». Аттестат аккредитации № RA.RU.311290 от 16.11.2015 г.

Нормативные документы, устанавливающие требования к АИИС КУЭ

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения

Изготовитель

Общество с ограниченной ответственностью «ЭНЕРГОМЕТРОЛОГИЯ» (ООО «ЭНЕРГОМЕТРОЛОГИЯ»)

ИНН 7714348389

Адрес: 125040, г. Москва, ул. Ямского поля 3-я, д. 2, кор. 12, этаж 2, пом II, ком 9

Телефон: 8 (495) 230-02-86 E-mail: info@energometrologia.ru

Испытательный центр

Федеральное бюджетное учреждение «Государственный региональный центр стандартизации, метрологии и испытаний в Самарской области»

(ФБУ «Самарский ЦСМ»)

Адрес: 443013, г. Самара, пр. Карла Маркса, 134

Телефон: 8 (846) 336-08-27 Факс: 8 (846) 336-15-54 E-mail: referent@samaragost.ru

Аттестат аккредитации ФБУ «Самарский ЦСМ» по проведению испытаний средств измерений в целях утверждения типа № RA.RU 311281 от 16.11.2015 г.