Приложение № 6 к сведениям о типах средств измерений, прилагаемым к приказу Федерального агентства по техническому регулированию и метрологии от «31» декабря 2020 г. № 2350

Лист № 1 Всего листов 10

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ПАО «Уралхимпласт»

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ПАО «Уралхимпласт» (далее – АИИС КУЭ) предназначена для измерений активной и реактивной электроэнергии, сбора, обработки, хранения и передачи полученной информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, двухуровневую автоматизированную систему с централизованным управлением и распределённой функцией измерений.

АИИС КУЭ включает в себя следующие уровни:

1-й уровень — измерительно-информационные комплексы (ИИК), которые включают в себя трансформаторы тока (ТТ), трансформаторы напряжения (ТН) и счетчики активной и реактивной электроэнергии (Счетчики), вторичные измерительные цепи и технические средства приема-передачи данных. Метрологические и технические характеристики измерительных компонентов АИИС КУЭ приведены в таблицах 2, 3.

2-й уровень — информационно-вычислительный комплекс (ИВК) ПАО «Уралхимпласт», включающий в себя каналообразующую аппаратуру, сервер баз данных (БД) АИИС КУЭ, автоматизированные рабочие места персонала (АРМ), устройство синхронизации времени УСВ-3 (УСВ). и программное обеспечение (ПО) ПК «Энергосфера».

ИВК предназначен для автоматизированного сбора и хранения результатов измерений, состояния средств измерений, подготовки и отправки отчетов в АО «АТС», АО «СО ЕЭС».

Измерительные каналы (ИК) состоят из двух уровней АИИС КУЭ.

Первичные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности, которые усредняются за период 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мощности.

Электрическая энергия, как интеграл по времени от средней за период 0,02 с мощности, вычисляется для интервалов времени 30 мин.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение мощности на интервале времени усреднения 30 мин.

Цифровой сигнал с выходов счетчиков поступает сервер БД, где осуществляется вычисление электроэнергии и мощности с учетом коэффициентов трансформации ТТ и ТН, выполняется дальнейшая обработка измерительной информации, в частности, формирование и хранение поступающей информации, оформление отчетных документов. Передача информации в заинтересованные организации осуществляется от сервера БД с помощью электронной почты по выделенному каналу связи по протоколу ТСР/IP.

АИИС КУЭ имеет систему обеспечения единого времени (СОЕВ), которая охватывает уровень ИИК и ИВК. АИИС КУЭ оснащена УСВ, прнимающим сигналы точного времени от глобальной навигационной спутниковой системы (ГЛОНАСС/GPS). Корректировка часов ИВК выполняется автоматически, от УСВ на величину не более ± 3 сек. Корректировка часов счетчиков выполняется автоматически в случае расхождения времени часов в счетчике и ИВК на величину более ± 2 с, но не чаще одного раза в сутки.

Факты коррекции времени с фиксацией даты и времени до и после коррекции часов счетчика электроэнергии, отражаются в его журнале событий.

Факты коррекции времени с фиксацией даты и времени до и после коррекции часов указанных устройств, отражаются в журнале событий сервера.

Программное обеспечение

В АИИС КУЭ используется ПО ПК «Энергосфера», в состав которого входят модули, указанные в таблице 1. ПО ПК «Энергосфера» обеспечивает защиту программного обеспечения и измерительной информации паролями в соответствии с правами доступа. Средством защиты данных при передаче является кодирование данных, обеспечиваемое программными средствами ПО ПК «Энергосфера».

Таблица 1 – Идентификационные данные ПО

тистици т тидентирикационили данили то						
Идентификационные признаки	Значение					
Идентификационное наименование ПО	ПК «Энергосфера»					
	Библиотека pso_metr.dll					
Номер версии (идентификационный номер) ПО	1.1.1.1					
Цифровой идентификатор ПО	CBEB6F6CA69318BED976E08A2BB7814B					
Алгоритм вычисления цифрового идентификатора ПО	MD5					

ПО ПК «Энергосфера» не влияет на метрологические характеристики ИК АИИС КУЭ, указанные в таблице 2.

Уровень защиты ПО от непреднамеренных и преднамеренных изменений - «высокий» в соответствии с Р 50.2.077-2014.

Метрологические и технические характеристики

Состав ИК АИИС КУЭ и их основные метрологические характеристики приведены в таблице 2.

Таблица 2 - Состав ИК АИИС КУЭ и их основные метрологические характеристики

~		Измерительные компоненты				_	огические истики ИК		
Номер ИК	Наименование ИК	TT	TH	Счётчик	УСВ	Вид электро- энергии	Основ- ная погреш- ность, %	Погрешность в рабочих условиях, %	
1	2	3	4	5	6	7	8	9	
1	ПС 110 кВ Пластмасс, ввод	ТПОЛ 10 Кл. т. 0,5S	НТМИ-6-66 Кл. т. 0,5	ПСЧ-4ТМ.05МК.00 Кл. т. 0,5S/1,0		активная	±1,2	±3,4	
	6 кВ Т-1	Ктт 1500/5 Рег. № 1261-02	Ктн 6000/100 Рег. № 2611-70	Per. № 64450-16		реактивная	±2,8	±5,8	
2	2 Пиастмасс врои Кл. 1	ТПОЛ 10 Кл. т. 0,5S	НТМИ-6-66 Кл. т. 0,5	ПСЧ-4ТМ.05МК.00 Кл. т. 0,5S/1,0 Рег. № 64450-16		активная	±1,2	±3,4	
	6 кВ Т-2	Ктт 1500/5 Рег. № 1261-02	Ктн 6000/100 Рег. № 2611-70			реактивная	±2,8	±5,8	
3	ПС 110 кВ Пластмасс, ввод	ТОП 0,66 Кл. т. 0,5S	_	ПСЧ-4ТМ.05МК.16 Кл. т. 0,5S/1,0 Рег. № 64450-16		УСВ-3 Рег. №	активная	±1,0	±3,3
	0,4 кВ ТСР-1	Ктт 15/5 Рег. № 15174-01			64242-16	реактивная	±2,4	±5,7	
4	ПС 110 кВ Пластмасс, ввод 0,4 кВ ТСР-2 ТОП 0,66 Кл. т. 0,5S Ктт 15/5 Рег. № 15174-01 ПСЧ-4ТМ.05МК.16 Кл. т. 0,5S/1,0 Рег. № 64450-16		активная	±1,0	±3,3				
4			-			реактивная	±2,4	±5,7	
5	ПС 110 кВ Пластмасс, ЗРУ-	ТПЛ-10 Кл. т. 0,5	НТМИ-6-66 Кл. т. 0,5	ПСЧ-4ТМ.05МК.00		активная	±1,2	±3,3	
5	6 кВ, 2 СШ 6 кВ, яч.22, ф.НТЗТИ	Ктт 200/5 Рег. № 1276-59	Ктн 6000/100 Рег. № 2611-70	Кл. т. 0,5S/1,0 Рег. № 64450-16		реактивная	±2,8	±5,7	

Продолжение таблицы 2

1	2.	3	4	5	6	7	8	9	
6	ПС 110 кВ Пластмасс, ЗРУ- 6 кВ, 1 СШ 6 кВ, яч.1, ф.Горэлектротра нспорт ввод 1	ТПЛ-10-М Кл. т. 0,5S Ктт 150/5 Рег. № 22192-03	НТМИ-6-66 Кл. т. 0,5 Ктн 6000/100 Рег. № 2611-70	ПСЧ-4ТМ.05МК.00 Кл. т. 0,5S/1,0 Рег. № 64450-16	0		активная	±1,2 ±2,8	±3,4 ±5,8
7	ПС 110 кВ Пластмасс, ЗРУ- 6 кВ, 2 СШ 6 кВ, яч.24, ф.Горэлектротра непорт ввод 2	ТПЛ-10-М Кл. т. 0,5S Ктт 150/5 Рег. № 22192-03	НТМИ-6-66 Кл. т. 0,5 Ктн 6000/100 Рег. № 2611-70	ПСЧ-4ТМ.05МК.00 Кл. т. 0,5S/1,0 Рег. № 64450-16		активная	±1,2 ±2,8	±3,4 ±5,8	
8	ПС 110 кВ Пластмасс, ЗРУ- 6 кВ, 1 СШ 6 кВ, яч.3, ф.УЗП ввод 1	ТПЛ-10-М Кл. т. 0,5S Ктт 150/5 Рег. № 22192-07	НТМИ-6-66 Кл. т. 0,5 Ктн 6000/100 Рег. № 2611-70	ПСЧ-4ТМ.05МК.00 Кл. т. 0,5S/1,0 Рег. № 64450-16	УСВ-3 Рег. № 64242-16	активная	±1,2 ±2,8	±3,4 ±5,8	
9	ПС 110 кВ Пластмасс, ЗРУ- 6 кВ, 2 СШ 6 кВ, яч.25, ф.УЗП ввод 2	ТПЛ-10-М Кл. т. 0,5S Ктт 150/5 Рег. № 22192-07	НТМИ-6-66 Кл. т. 0,5 Ктн 6000/100 Рег. № 2611-70	ПСЧ-4ТМ.05МК.00 Кл. т. 0,5S/1,0 Рег. № 64450-16		активная	±1,2 ±2,8	±3,4 ±5,8	
10	ПС 110 кВ Полимер, ЗРУ-6 кВ, 1 СШ 6 кВ, яч.3, ф. Ввод-1 6 кВ	ТЛШ-10-1 Кл. т. 0,5S Ктт 1000/5 Рег. № 11077-03	НАМИ-10-95 УХЛ2 Кл. т. 0,5 Ктн 6000/100 Рег. № 20186-05	ПСЧ-4ТМ.05МК.00 Кл. т. 0,5S/1,0 Рег. № 64450-16		активная	±1,2 ±2,8	±3,4 ±5,8	

Продолжение таблицы 2

продо.	іжение таолицы 2		T					
1	2	3	4	5	6	7	8	9
11	ПС 110 кВ Полимер, ЗРУ-6 кВ, 2 СШ 6 кВ, яч.2, ф. Ввод-2 6 кВ	ТЛШ-10-1 Кл. т. 0,5S Ктт 1000/5 Рег. № 11077-03	НАМИ-10-95 УХЛ2 Кл. т. 0,5 Ктн 6000/100 Рег. № 20186-05	ПСЧ-4ТМ.05МК.00 Кл. т. 0,5S/1,0 Рег. № 64450-16		активная	±1,2 ±2,8	±3,4 ±5,8
12	ПС 110 кВ Полимер, ЗРУ-6 кВ, 3 СШ 6 кВ, яч.31, ф. Ввод-3 6 кВ	ТЛШ-10-1 Кл. т. 0,5S Ктт 1000/5 Рег. № 11077-03	НАМИ-10-95 УХЛ2 Кл. т. 0,5 Ктн 6000/100 Per. № 20186-05	ПСЧ-4ТМ.05МК.00 Кл. т. 0,5S/1,0 Рег. № 64450-16		активная	±1,2 ±2,8	±3,4 ±5,8
13	ПС 110 кВ Полимер, ЗРУ-6 кВ, 4 СШ 6 кВ, яч.30, ф. Ввод-4 6 кВ	ТЛШ-10-1 Кл. т. 0,5S Ктт 1000/5 Рег. № 11077-03	НАМИ-10-95 УХЛ2 Кл. т. 0,5 Ктн 6000/100 Рег. № 20186-05	ПСЧ-4ТМ.05МК.00 Кл. т. 0,5S/1,0 Рег. № 64450-16	УСВ-3 Рег. №	активная	±1,2 ±2,8	±3,4 ±5,8
14	ПС 110 кВ Полимер, ввод 6 кВ ТСН-1	ТПЛМ-10 Кл. т. 0,5 Ктт 15/5 Рег. № 2363-68 ТПЛ-10-М Кл. т. 0,5S Рег. № 22192-03	НАМИ-10-95 УХЛ2 Кл. т. 0,5 Ктн 6000/100 Рег. № 20186-05	ПСЧ-4ТМ.05МК.00 Кл. т. 0,5S/1,0 Рег. № 64450-16	64242-16	активная	±1,2 ±2,8	±3,3 ±5,7
15	ПС 110 кВ Полимер, ввод 6 кВ ТСН-2	ТПЛ-10 Кл. т. 0,5 Ктт 15/5 Рег. № 1276-59	НАМИ-10-95 УХЛ2 Кл. т. 0,5 Ктн 6000/100 Рег. № 20186-05	ПСЧ-4ТМ.05МК.00 Кл. т. 0,5S/1,0 Рег. № 64450-16		активная	±1,2 ±2,8	±3,3 ±5,7
16	ТП-20А 6 кВ, РУ-0,4 кВ, ф.16 Овощная база	ТШП 0,66 Кл. т. 0,5S Ктт 400/5 Рег. № 15173-01	-	ПСЧ-4ТМ.05МК.16 Кл. т. 0,5S/1,0 Рег. № 64450-16		активная	±1,0 ±2,4	±3,3 ±5,7

Окончание таблицы 2

1	2	3	4	5	6	7	8	9	
17	ЦРП-1 6 кВ, РУ- 6 кВ, 1 СШ 6 кВ,	ТПОЛ-10 Кл. т. 0,5S	Кл. т. 0,5	ПСЧ-4ТМ.05МК.00 Кл. т. 0,5S/1,0			активная	±1,2	±3,4
,	яч.22, ф.67	Ktt 600/5 Per. № 47958-11	Ктн 6000:√3/100:√3 Рег. № 46738-11	Рег. № 64450-16	УСВ-3 Рег. №	реактивная	±2,8	±5,8	
18	ЦРП-1 6 кВ, РУ- 6 кВ, 2 СШ 6 кВ,	ТПОЛ-10 Кл. т. 0,5S	ЗНОЛ-06-6 Кл. т. 0,5	ПСЧ-4ТМ.05МК.00 Кл. т. 0,5S/1,0	64242-16	активная	±1,2	±3,4	
	яч.23, ф.94	Ктт 600/5 Рег. № 47958-11	Ктн 6000:√3/100:√3 Рег. № 46738-11	Рег. № 64450-16		реактивная	$\pm 2,8$	±5,8	
Пределы допускаемой погрешности СОЕВ АИИС КУЭ, с						±	:5		

Примечания

- 1 Характеристики погрешности ИК даны для измерений электроэнергии и средней мощности (получасовой).
- 2 В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0,95.
- 3 Погрешность в рабочих условиях указана $\cos \varphi = 0.8$ инд $I=0.02(0.05) \cdot I_{\text{ном}}$ и температуры окружающего воздуха в месте расположения счетчиков электроэнергии для ИК №№ 1 18 от 0 до плюс 40 °C.
- 4 Допускается замена ТТ, ТН и счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в таблице 2, при условии, что Предприятие-владелец АИИС КУЭ не претендует на улучшение указанных в таблице 2 метрологических характеристик.
 - 5 Допускается замена УСВ на аналогичные утвержденных типов.
- 6 Замена оформляется техническим актом в установленном на Предприятии-владельце АИИС КУЭ порядке. Технический акт хранится совместно с эксплуатационными документами на АИИС КУЭ как их неотъемлемая часть.

Основные технические характеристики ИК приведены в таблице 3.

Таблица 3 – Основные технические характеристики ИК

Таолица 3 — Основные технические характеристики ИК Наименование уарактеристики	Значение
Наименование характеристики	18
Количество измерительных каналов	16
Нормальные условия:	
параметры сети:	00 101
- напряжение, % от $U_{\text{ном}}$	от 99 до 101
- ток, % от I _{ном}	от 100 до 120
- частота, Гц	от 49,85 до 50,15
 коэффициент мощности соѕф 	0,9
- температура окружающей среды, °С	от +21 до +25
Условия эксплуатации:	
параметры сети:	
- напряжение, % от $U_{\mbox{\tiny HOM}}$	от 90 до 110
- ток, $\%$ от $\mathrm{I}_{\text{ном}}$	от 2(5) до 120
- коэффициент мощности	от 0,5 инд до 0,8 емк
- частота, Гц	от 49,6 до 50,4
- температура окружающей среды для ТТ и ТН, °С	от -40 до +35
- температура окружающей среды в месте расположения	
счётчиков, °С:	от -40 до +60
- температура окружающей среды в месте расположения сервера,	
°C	от +10 до +30
Надежность применяемых в АИИС КУЭ компонентов:	
Счётчики:	
- среднее время наработки на отказ, ч, не менее:	165000
- среднее время восстановления работоспособности, ч	2
Сервер:	
- среднее время наработки на отказ, ч, не менее	70000
- среднее время восстановления работоспособности, ч	1
Глубина хранения информации	
Счётчики:	
- тридцатиминутный профиль нагрузки в двух направлениях,	
сутки, не менее	114
- при отключении питания, лет, не менее	45
Сервер:	
- хранение результатов измерений и информации состояний	
средств измерений, лет, не менее	3,5

Надежность системных решений:

- защита от кратковременных сбоев питания сервера с помощью источника бесперебойного питания;
- резервирование каналов связи: информация о результатах измерений может передаваться в организации—участники оптового рынка электроэнергии с помощью электронной почты и сотовой связи.

В журналах событий фиксируются факты:

- журнал счётчика:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике;

Защищённость применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
 - -счётчика;
 - промежуточных клеммников вторичных цепей напряжения;
 - испытательной коробки;
 - сервера;
- защита на программном уровне информации при хранении, передаче,
 параметрировании:
 - -счётчика;
 - сервера.

Возможность коррекции времени в:

- счётчиках (функция автоматизирована);
- ИВК (функция автоматизирована).

Возможность сбора информации:

- о результатах измерений (функция автоматизирована).

Цикличность:

- измерений 30 мин (функция автоматизирована);
- сбора 30 мин (функция автоматизирована).

Знак утверждения типа

наносится на титульные листы эксплуатационной документации на АИИС КУЭ типографским способом.

Комплектность средства измерений

В комплект поставки АИИС КУЭ входит техническая документация на АИИС КУЭ и на комплектующие средства измерений.

Комплектность АИИС КУЭ представлена в таблице 4.

Таблица 4 - Комплектность АИИС КУЭ

Наименование	Тип/Обозначение	Количество, шт./Экз.
1	2	3
Трансформатор тока	ТПОЛ 10	10
Трансформатор тока	ТОП 0,66	6
Трансформатор тока	ТПЛ-10	4
Трансформатор тока	ТПЛ-10-М	9
Трансформатор тока	ТЛШ-10-1	12
Трансформатор тока	ТПЛМ-10	1
Трансформатор тока	ТШП 0,66	3
Трансформатор напряжения	НТМИ-6-66	2
Трансформатор напряжения	НАМИ-10-95 УХЛ2	4
Трансформатор напряжения	3НОЛ-06-6	6
Счётчик электрической энергии многофункциональный	ПСЧ-4ТМ.05МК.00	15
Счётчик электрической энергии многофункциональный	ПСЧ-4ТМ.05МК.16	3
Устройство синхронизации времени	УСВ-3	1
Программное обеспечение	ПК «Энергосфера»	1
Методика поверки	МП 058-2020	1
Паспорт-Формуляр	ЕГ.01.076-ПФ	1

Поверка

осуществляется по документу МП 058-2020 «ГСИ. Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ПАО «Уралхимпласт». Методика поверки», утвержденному ООО «Спецэнергопроект» $06.11.2020~\Gamma$.

Основные средства поверки:

- блок коррекции времени ЭНКС-2, Рег. № 37328-15;
- для счетчиков ПСЧ-4ТМ.05МК по документу ИЛГШ.411152.167РЭ1 «Счётчик электрической энергии много-функциольный ПСЧ-4ТМ.05МК. Руководство по эксплуатации. Часть 2. Методика поверки», утвержденному ФБУ «Нижегородский ЦСМ» 28 апреля 2016 г.;
- для трансформаторов тока в соответствии с ГОСТ 8.217-2003 «ГСИ. Трансформаторы тока. Методика поверки»;
- для трансформаторов напряжения в соответствии с ГОСТ 8.216-2011 «ГСИ. Трансформаторы напряжения. Методика поверки»;
- для УСВ УСВ-3 по документу РТ-МП-3124-441-2016 «Устройства синхронизации времени УСВ-3. Методика поверки», утвержденному ФБУ «Ростест-Москва» 23.03.2016 г.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке в виде наклейки со штрих – кодом и (или) оттиском клейма поверителя.

Сведения о методиках (методах) измерений

приведены в документе «Методика измерений электрической энергии и мощности с использованием системы автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ПАО «Уралхимпласт», аттестованном ООО »Спецэнергопроект», аттестат об аккредитации № RA.RU.312236 от 20.07.2017 г.

Нормативные документы, устанавливающие требования к АИИС КУЭ

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия

ГОСТ 34.601-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения

Изготовитель

Общество с ограниченной ответственностью «ЕЭС-Гарант»

(ООО «ЕЭС-Гарант»)

ИНН 5024173259

Адрес: 143421, Московская область, Красногорский р-н, 26 км автодороги «Балтия»,

бизнес-центр «Рига Ленд», стр. 3, офис 429 (часть «А»)

Телефон: (495) 980-59-00 Факс: (495) 980-59-08

Заявитель

Общество с ограниченной ответственностью «Стройэнергетика»

(ООО «Стройэнергетика»)

Адрес: 129337, г. Москва, ул. Красная Сосна, д. 20, стр. 1, комн. 4

Телефон: (926) 786-90-40

Факс: Stroyenergetika@gmail.com

Испытательный центр

Общество с ограниченной ответственностью «Спецэнергопроект»

(ООО «Спецэнергопроект»)

Адрес: 115419, г. Москва, ул. Орджоникидзе, д. 11, стр. 3, этаж 4, помещ. I, ком. 6, 7

Телефон: (495) 410-28-81

E-mail: gd.spetcenergo@gmail.com

Аттестат аккредитации ООО «Спецэнергопроект» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.312429 от 30.01.2018 г.