УТВЕРЖДЕНО

приказом Федерального агентства по техническому регулированию и метрологии от «9» марта 2021 г. №246

Регистрационный № 80984-21

Лист № 1 Всего листов 9

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «НЭК» (7 очередь)

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «НЭК» (7 очередь) (далее – АИИС КУЭ) предназначена для измерений активной и реактивной электроэнергии, автоматизированного сбора, обработки, хранения, формирования отчетных документов и передачи полученной информации заинтересованным организациям в рамках согласованного регламента.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную двухуровневую автоматизированную систему с централизованным управлением и распределенной функцией измерений.

АИИС КУЭ включает в себя следующие уровни:

1-й уровень — измерительно-информационные комплексы (ИИК), включающие в себя измерительные трансформаторы тока (ТТ), измерительные трансформаторы напряжения (ТН), счетчики активной и реактивной электрической энергии (счетчики), вторичные измерительные цепи и технические средства приема-передачи данных.

2-й уровень – информационно-вычислительный комплекс (ИВК), включающий в себя сервер с программным комплексом (ПК) «Энергосфера», устройство синхронизации времени (УСВ), автоматизированные рабочие места (АРМ), каналообразующую аппаратуру, технические средства для организации локальной вычислительной сети и разграничения прав доступа к информации.

Первичные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности, которые усредняются за период 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мошности.

Электрическая энергия, как интеграл по времени от средней за период 0,02 с мощности, вычисляется для интервалов времени 30 мин.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение мгновенных значений мощности на интервале времени усреднения 30 мин.

Цифровой сигнал с выходов счетчиков при помощи технических средств приема-передачи данных поступает на сервер, где осуществляется обработка измерительной информации, в частности вычисление электрической энергии и мощности с учетом коэффициентов трансформации ТТ и ТН, формирование и хранение поступающей информации, оформление отчетных документов, передача информации на APM. При этом, если вычисление электрической энергии и мощности с учетом коэффициентов трансформации ТТ и ТН

осуществляется в счетчиках, на сервере данное вычисление осуществляется умножением на коэффициент равный единице.

Также сервер может принимать измерительную информацию в виде xml-файлов установленных форматов от ИВК прочих АИИС КУЭ, зарегистрированных в Федеральном информационном фонде, и передавать всем заинтересованным субъектам оптового рынка электроэнергии (ОРЭ).

Передача информации от сервера или APM коммерческому оператору с электронной цифровой подписью субъекта OPЭ, системному оператору и в другие смежные субъекты OPЭ осуществляется по каналу связи с протоколом TCP/IP сети Internet в виде xml-файлов установленных форматов в соответствии с приложением 11.1.1 к Положению о порядке получения статуса субъекта оптового рынка и ведения реестра субъектов оптового рынка электрической энергии и мощности.

АИИС КУЭ имеет систему обеспечения единого времени (СОЕВ), которая включает в себя часы счетчиков, часы сервера и УСВ. УСВ обеспечивает передачу шкалы времени, синхронизированной по сигналам глобальных навигационных спутниковых систем с национальной шкалой координированного времени РФ UTC(SU).

Сравнение показаний часов сервера с УСВ осуществляется 1 раз в час. Корректировка часов сервера производится независимо от величины расхождений.

Сравнение показаний часов счетчиков с часами сервера осуществляется во время сеанса связи со счетчиками. Корректировка часов счетчиков производится при расхождении показаний часов счетчиков с часами сервера на величину более ±2 с.

Журналы событий счетчиков и сервера отображают факты коррекции времени с обязательной фиксацией времени до и после коррекции или величины коррекции времени, на которую было скорректировано устройство.

Программное обеспечение

В АИИС КУЭ используется ПК «Энергосфера». ПК «Энергосфера» обеспечивает защиту измерительной информации паролями в соответствии с правами доступа. Средством защиты

данных при передаче является кодирование данных, обеспечиваемое программными средствами ПК «Энергосфера». Метрологически значимая часть ПК «Энергосфера» указана в таблице 1. Уровень защиты программного обеспечения от непреднамеренных и преднамеренных изменений — «высокий» в соответствии с Р 50.2.077-2014.

Таблица 1 – Идентификационные данные ПК «Энергосфера»

Идентификационные данные (признаки)	Значение			
Идентификационное наименование ПО	pso_metr.dll			
Номер версии (идентификационный номер) ПО	не ниже 1.1.1.1			
Цифровой идентификатор ПО	CBEB6F6CA69318BED976E08A2BB7814B			
Алгоритм вычисления цифрового идентификатора ПО	MD5			

Метрологические и технические характеристики Таблица 2 — Состав измерительных каналов (ИК) АИИС КУЭ и их метрологические характеристики

		Из	вмерительные ком		1				кие характери- и ИК
Но- мер ИК	Наименование точки измере- ний	TT	ТН	Счетчик	УСВ	Сервер	Вид элек- тро- энер- гии	Границы до- пускаемой ос- новной отно- сительной по- грешности (±δ), %	Границы допускаемой относительной погрешности в рабочих условиях (±δ), %
1	2	3	4	5	6	7	8	9	10
1	ТП №б/н 6 кВ, РУ-0,4 кВ, СШ 0,4кВ, Ввод 0,4 кВ	ТТЭ-100 Кл.т. 0,5 1500/5 Рег. № 67761-17 Фазы: А; В; С	_	Меркурий 236 ART-03 PQRS Кл.т. 0,5S/1,0 Зав. № 42496014 Рег. № 47560-11			Актив- ная Реак- тивная	1,0 2,1	3,2 5,5
2	ТП-523п 6 кВ, РУ-0,4 кВ, СШ- 0,4 кВ, Ввод 0,4 кВ	ТШП-0,66М Кл.т. 0,5 600/5 Рег. № 57564-14 Фазы: A; B; C	-	Меркурий 230 ART-03 PQRSIDN Кл.т. 0,5S/1,0 Per. № 23345-07	УСВ-3	Fujitsu	Актив- ная Реак- тивная	1,0 2,1	3,2 5,5
3	ВЛ-10 кВ №4, Оп. №20, ВЛ1 10 кВ КТП №113, ПКУ- 210 10 кВ	ТОЛ-ЭС-10 Кл.т. 0,5S 100/5 Рег. № 34651-07 Фазы: А; В ТОЛ-ЭС-10 Кл.т. 0,5 100/5 Рег. № 34651-07 Фаза: С	ЗНОЛ.06 Кл.т. 0,5 10000/√3/100/√3 Рег. № 3344-04 Фазы: А; В; С	Меркурий 234 ARTM-00 PBR.R Кл.т. 0,5S/1,0 Рег. № 75755-19	Per. № 64242-16	PRIMERGY RX2510 M2	Актив- ная Реак- тивная	1,3 2,5	3,3 5,6

трод	олжение гаолиць		1			_			1.0						
1	2	3	4	5	6	7	8	9	10						
4	ВЛ-10 кВ №6, Оп. №19, ВЛ2 10 кВ КТП №113, ПКУ-211 10 кВ	ТОЛ-ЭС-10 Кл.т. 0,5S 100/5 Рег. № 34651-07 Фазы: A; B; C	3НОЛ.06 Кл.т. 0,5 10000/√3/100/√3 Рег. № 3344-04 Фазы: A; B; C	Меркурий 234 ARTM-00 PBR.R Кл.т. 0,5S/1,0 Рег. № 75755-19		Per. № PRIMER	Per. № PRIMERGY				Актив- ная Реак- тивная	1,3 2,5	3,4 5,7		
5	3ТП №289 10 кВ, РУ-0,4 кВ, 1 СШ 0,4 кВ, Ввод1 0,4 кВ	Т-0,66 М УЗ Кл.т. 0,5 1000/5 Рег. № 71031-18 Фазы: А; В; С	_	Меркурий 234 ARTM-03 PBR.R Кл.т. 0,5S/1,0 Рег. № 75755-19					Актив- ная Реак- тивная	1,0 2,1	3,2 5,5				
6	3ТП №289 10 кВ, РУ-0,4 кВ, 2 СШ 0,4 кВ, Ввод2 0,4 кВ	Т-0,66 М УЗ Кл.т. 0,5 1000/5 Рег. № 71031-18 Фазы: А; В; С	_	Меркурий 234 ARTM-03 PBR.R Кл.т. 0,5S/1,0 Рег. № 75755-19									Актив- ная Реак- тивная	1,0 2,1	3,2 5,5
7	КТП №295 10 кВ, РУ-0,4 кВ, СШ 0,4 кВ, Ввод 0,4 кВ	Т-0,66 Кл.т. 0,5S 400/5 Рег. № 52667-13 Фазы: А; В; С	_	ПСЧ- 4ТМ.05МК.16 Кл.т. 0,5S/1,0 Рег. № 46634-11				RX2510 M2	Актив- ная Реак- тивная	1,0 2,1	3,3 5,6				
8	КТП №294 10 кВ, РУ-0,4 кВ, СШ 0,4 кВ, Ввод 0,4 кВ	Т-0,66 УЗ Кл.т. 0,5 300/5 Рег. № 71031-18 Фазы: А; В; С	-	Меркурий 236 ART-03 PQRS Кл.т. 0,5S/1,0 Рег. № 47560-11			Актив- ная Реак- тивная	1,0 2,1	3,2 5,5						
9	ТП-856 10 кВ, РУ-0,4 кВ, 1 СШ 0,4 кВ, Ввод 1 0,4 кВ	Т-0,66 Кл.т. 0,5 1000/5 Рег. № 52667-13 Фазы: А; В; С	_	ПСЧ- 4ТМ.05М.16 Кл.т. 0,5S/1,0 Рег. № 36355-07			Актив- ная Реак- тивная	1,0 2,1	3,2 5,5						

трод	олжение гаолиць		T			_			
1	2	3	4	5	6	7	8	9	10
10	ТП-856 10 кВ, РУ-0,4 кВ, 2 СШ 0,4 кВ, Ввод 2 0,4 кВ	Т-0,66 Кл.т. 0,5 1000/5 Рег. № 52667-13 Фазы: А; В; С	_	ПСЧ- 4ТМ.05М.16 Кл.т. 0,5S/1,0 Рег. № 36355-07			Актив- ная Реак- тивная	1,0 2,1	3,2 5,5
11	КТП ТЗ-940(п) 10 кВ, РУ-0,4 кВ, СШ 0,4 кВ, Ввод 0,4 кВ	Т-0,66 УЗ Кл.т. 0,5 400/5 Рег. № 71031-18 Фазы: А; В; С	_	Меркурий 230 ART-03 PQRSIDN Кл.т. 0,5S/1,0 Per. № 23345-07	УСВ-3		Актив- ная Реак- тивная	1,0 2,1	3,2 5,5
12	ТП (2500 кВА) 10 кВ, Ввод 10 кВ Т-1	ТЛО-10 Кл.т. 0,5S 200/5 Рег. № 25433-11 Фазы: А; С	НАМИ-10- 95УХЛ2 Кл.т. 0,5 10000/100 Рег. № 20186-05 Фазы: АВС	Меркурий 234 ART-00 PR Кл.т. 0,5S/1,0 Рег. № 75755-19	Per. № 64242-16	Fujitsu PRIMERGY RX2510 M2	Актив- ная Реак- тивная	1,3 2,5	3,4 5,7
13	КРУН-10 кВ, ВЛ 10 кВ ТП О-3-553п	ТОЛ-НТЗ-10 Кл.т. 0,5 300/5 Рег. № 69606-17 Фазы: A; B; C	3х3НОЛ-СЭЩ- 10 Кл.т. 0,2 10000/100 Рег. № 71707-18 Фазы: ABC	Меркурий 234 ARTM-00 PB.G Кл.т. 0,5S/1,0 Рег. № 48266-11			Актив- ная Реак- тивная	1,1 2,2	3,2 5,6
Пределы допускаемой абсолютной погрешности часов компонентов АИИС КУЭ в рабочих условиях относительно шкалы							±5 c		

времени UTC(SU)

Примечания:

- 1 В качестве характеристик погрешности ИК установлены границы допускаемой относительной погрешности ИК при доверительной вероятности, равной 0,95.
- 2 Характеристики погрешности ИК указаны для измерений активной и реактивной электроэнергии на интервале времени 30 мин.
- 3 Погрешность в рабочих условиях указана для ИК №№ 4, 7, 12 для тока 2 % от $I_{\text{ном}}$, для остальных ИК для тока 5 % от $I_{\text{ном}}$; $\cos \varphi = 0.8$ инд.
- 4 Допускается замена ТТ, ТН и счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в таблице 2, при условии, что предприятие-владелец АИИС КУЭ не претендует на улучшение указанных в таблице 2 метрологических характеристик. Допускается замена УСВ на аналогичное утвержденного типа, а также замена сервера без изменения используемого ПО (при условии сохранения цифрового идентификатора ПО). Замена оформляется актом в установленном собственником АИИС КУЭ порядке. Акт хранится совместно с настоящим описанием типа АИИС КУЭ как его неотъемлемая часть.

Таблица 3 – Основные технические характеристики ИК

Наименование характеристики ИК Наименование характеристики	Значение
1	2
Количество ИК	13
Нормальные условия:	
параметры сети:	
напряжение, % от Ином	от 95 до 105
ток, % от Іном	
для ИК №№ 4, 7, 12	от 1 до 120
для остальных ИК	от 5 до 120
коэффициент мощности соѕф	0,9
частота, Гц	от 49,8 до 50,2
температура окружающей среды, °С	от +21 до +25
Условия эксплуатации:	
параметры сети:	
напряжение, % от Uном	от 90 до 110
ток, % от Іном	
для ИК №№ 4, 7, 12	от 1 до 120
для остальных ИК	от 5 до 120
коэффициент мощности соѕф	от 0,5 до 1,0
частота, Гц	от 49,6 до 50,4
температура окружающей среды в месте расположения ТТ, ТН, °С	от -45 до +40
температура окружающей среды в месте расположения счетчиков, °С	от +5 до +35
температура окружающей среды в месте расположения сервера, °С	от +15 до +25
Надежность применяемых в АИИС КУЭ компонентов:	
для счетчиков типа Меркурий 230:	
среднее время наработки на отказ, ч, не менее	150000
среднее время восстановления работоспособности, ч	2
для счетчиков типов Меркурий 234 (регистрационный номер в	
Федеральном информационном фонде 48266-11), Меркурий 236:	
среднее время наработки на отказ, ч, не менее	220000
среднее время восстановления работоспособности, ч	2
для счетчиков типа ПСЧ-4ТМ.05МК:	
среднее время наработки на отказ, ч, не менее	165000
среднее время восстановления работоспособности, ч	2

1	2
для счетчиков типа Меркурий 234 (регистрационный номер в	
Федеральном информационном фонде 75755-19):	
среднее время наработки на отказ, ч, не менее	320000
среднее время восстановления работоспособности, ч	2
для счетчиков типа ПСЧ-4ТМ.05М:	
среднее время наработки на отказ, ч, не менее	140000
среднее время восстановления работоспособности, ч для УСВ:	2
среднее время наработки на отказ, ч, не менее	45000
среднее время восстановления работоспособности, ч	2
для сервера:	
среднее время наработки на отказ, ч, не менее	70000
среднее время восстановления работоспособности, ч	1
Глубина хранения информации:	
для счетчиков типа Меркурий 230:	
тридцатиминутный профиль нагрузки в двух направлениях, сут,	
не менее	85
при отключении питания, лет, не менее	10
для счетчиков типов Меркурий 234, Меркурий 236:	
тридцатиминутный профиль нагрузки в двух направлениях, сут,	
не менее	170
при отключении питания, лет, не менее	10
для счетчиков типов ПСЧ-4ТМ.05МК, ПСЧ-4ТМ.05М:	
тридцатиминутный профиль нагрузки в двух направлениях, сут,	
не менее	113
при отключении питания, лет, не менее	40
для сервера:	
хранение результатов измерений и информации состояний	
средств измерений, лет, не менее	3,5

Надежность системных решений:

защита от кратковременных сбоев питания сервера с помощью источника бесперебойного питания;

резервирование каналов связи: информация о результатах измерений может передаваться в организации-участники оптового рынка электроэнергии по электронной почте.

В журналах событий фиксируются факты:

- журнал счетчика:
 параметрирования;
 пропадания напряжения;
 коррекции времени в счетчике.
- журнал сервера:
 параметрирования;
 пропадания напряжения;
 коррекции времени в счетчике и сервере.

Защищенность применяемых компонентов:

 механическая защита от несанкционированного доступа и пломбирование: счетчиков электрической энергии; промежуточных клеммников вторичных цепей напряжения; испытательной коробки; сервера. – защита на программном уровне информации при хранении, передаче, параметрировании:

счетчика электрической энергии;

сервера.

Возможность коррекции времени в:

счетчиках электрической энергии (функция автоматизирована);

сервере (функция автоматизирована).

Возможность сбора информации:

о состоянии средств измерений;

о результатах измерений (функция автоматизирована).

Цикличность:

измерений 30 мин (функция автоматизирована);

сбора не реже одного раза в сутки (функция автоматизирована).

Знак утверждения типа

наносится на титульные листы эксплуатационной документации на АИИС КУЭ типографским способом.

Комплектность средства измерений

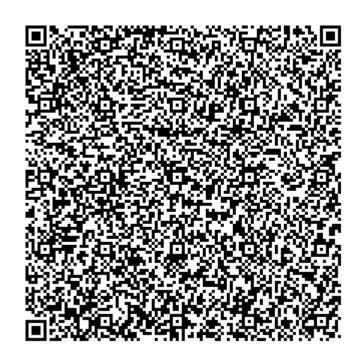
В комплект поставки входит техническая документация на АИИС КУЭ и на комплектующие средства измерений.

Комплектность АИИС КУЭ представлена в таблице 4.

Таблица 4 — Комплектность АИИС КУЭ

Гаолица 4 — Комплектность АИИС КУЭ		TC
Наименование	Обозначение	Количество,
		шт./экз.
1	2	3
Трансформаторы тока измерительные	TTЭ-100	3
Трансформаторы тока	ТШП-0,66М	3
Трансформаторы тока	ТОЛ-ЭС-10	6
Трансформаторы тока	Т-0,66 М УЗ	6
Трансформаторы тока	T-0,66	9
Трансформаторы тока	Т-0,66 У3	6
Трансформаторы тока	ТЛО-10	2
Трансформаторы тока	ТОЛ-НТЗ-10	3
Трансформаторы напряжения	НТМИ-6	1
Трансформаторы напряжения измерительные	3НОЛ.06	6
Трансформаторы напряжения	НАМИ-10-95УХЛ2	1
Трансформаторы напряжения	3х3НОЛ-СЭЩ-10	1
Счетчики электрической энергии трехфазные статиче-	Меркурий 230	2
ские	тиеркурии 250	2
Счетчики электрической энергии статические	Меркурий 234	6
Счетчики электрической энергии многофункциональные	ПСЧ-4ТМ.05МК	1
Счетчики электрической энергии статические трехфаз-	Меркурий 236	2
ные	Меркурии 230	2
Счетчики электрической энергии многофункциональные	ПСЧ-4ТМ.05М	2
Устройства синхронизации времени	УСВ-3	1
Canpan	Fujitsu PRIMERGY	1
Сервер	RX2510 M2	1

1	2	3
Методика поверки	МП ЭПР-313-2020	1
Паспорт-формуляр	33178186.411711.007.ФО	1


Сведения о методиках (методах) измерений

приведены в документе «Методика измерений электрической энергии с использованием АИИС КУЭ ООО «НЭК» (7 очередь)», аттестованном ООО «ЭнергоПромРесурс», аттестат аккредитации № RA.RU.312078 от 07.02.2017 г.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ООО «НЭК» (7 очередь)

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения

