УТВЕРЖДЕНО

приказом Федерального агентства по техническому регулированию и метрологии от «15» марта 2021 г. №319

Лист № 1 Всего листов 5

Регистрационный № 81257-21

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система измерений количества и показателей качества нефти № 656 на ЦПС Юг Новопортовского НГКМ ООО «Газпромнефть-Ямал»

Назначение средства измерений

Система измерений количества и показателей качества нефти № 656 на ЦПС Юг Новопортовского НГКМ ООО «Газпромнефть-Ямал» (далее — СИКН) предназначена для измерения массы нефти.

Описание средства измерений

Принцип действия СИКН основан на прямом методе динамических измерений с помощью преобразователей массового расхода жидкости. Выходные сигналы преобразователей расхода, давления, температуры, плотности, объемной доли воды в нефти по линиям связи поступают в систему обработки информации, которая принимает информацию и производит вычисление массы и показателей качества нефти по реализованному в ней алгоритму.

Конструктивно СИКН представляет собой единичный экземпляр измерительной системы, спроектированной и смонтированной для конкретного объекта из компонентов серийного производства. В состав СИКН входит:

- 1) Блок измерительных линий (БИЛ), состоящий из пяти измерительных линий (четырех рабочих и одной контрольно-резервной).
- 2) Блок измерений показателей качества нефти (БИК), предназначенный для измерения показателей качества нефти.
- 3) Система сбора и обработки информации (СОИ), предназначенная для сбора и обработки информации, поступающей от измерительных преобразователей, а также для вычислений, индикации и регистрации результатов измерений.
- 4) Блок трубопоршневой поверочной установки (ТПУ), предназначенный для проведения поверки и контроля метрологических характеристик преобразователей массового расхода.

В составе СИКН функционально выделены измерительные каналы (ИК) массового расхода, определение метрологических характеристик которых осуществляется комплектным методом при поверке СИКН.

Таблина 1 – Состав СИКН

Наименование и тип средства измерений	Регистрационный номер в
	Федеральном
	информационном фонде по
	обеспечению единства
	измерений
Блок измерительных линий	-
Счетчик-расходомер массовый Micro Motion мод. CMF 400	45115-10
Преобразователи измерительные Rosemount 644	56381-14
Термопреобразователи сопротивления платиновые серии 65	22257-11
Преобразователи давления измерительные 3051	14061-15
Блок измерений показателей качества	нефти
Влагомер нефти поточный УДВН-1пм	14557-10
	14557-15
Преобразователь плотности жидкости измерительный	52638-13
модели 7835	
Расходомер-счетчик ультразвуковой OPTISONIC 3400	57762-14
Преобразователи измерительные Rosemount 644	56381-14
Термопреобразователи сопротивления платиновые серии 65	22257-11
Преобразователи давления измерительные 3051	14061-15
Система сбора и обработки информа	ции
Комплексы измерительно-вычислительные ОКТОПУС-Л	43239-15
(OCTOPUS-L)	
Блок трубопоршневой поверочной уста	новки
Установка поверочная трубопоршневая ТПУ	67156-17
ИНКОМСИСТЕМ	
Датчики температуры ТСПТ	57176-14
Датчики давления Метран-150	32854-13
Комплекс измерительно-вычислительный расхода и	52866-13
количества жидкостей и газов АБАК+	

В состав СИКН входят показывающие средства измерений давления и температуры нефти утвержденных типов.

СИКН обеспечивает выполнение следующих функций:

- автоматическое измерение массы «брутто» нефти;
- автоматизированное вычисление массы «нетто» нефти и массовой доли воды;
- автоматическое измерение технологических параметров (температуры и давления);
- автоматическое измерение показателей качества нефти (плотности и объемной доли воды в нефти);
 - отображение (индикацию), регистрацию и архивирование результатов измерений;
- поверку преобразователей массового расхода на месте эксплуатации без прекращения учётных операций;
- контроль метрологических характеристик преобразователей массового расхода, преобразователя плотности и поточного влагомера на месте эксплуатации без прекращения ТКО:
 - отбор объединённой пробы нефти по ГОСТ 2517-2012;
- получения 2- часовых, сменных, суточных и месячных отчётов, актов приёма-сдачи нефти, паспортов качества и журналов регистрации показаний средств измерений с выводом данных на дисплей и на печатающее устройство;
 - дистанционное управление запорной арматурой;
- контроль герметичности запорной арматуры, влияющей на результат измерений по СИКН.

Общий вид СИКН представлен на рисунке 1.

Рисунок 1 – Общий вид СИКН

Пломбирование средств измерений, находящихся в составе системы измерений количества и показателей качества нефти № 656 на ЦПС Юг Новопортовского НГКМ ООО «Газпромнефть-Ямал» осуществляется согласно требований в их описания типа. В случае отсутствия таких требований в описании типа пломбирование проводится согласно МИ 3002-2006.

Программное обеспечение

Программное обеспечение (ПО) системы обеспечивает реализацию функций системы.

 Π О системы реализовано в ИВК и компьютере APM оператора системы с Π О «Rate APM оператора УУН».

Защита ПО системы от непреднамеренных и преднамеренных изменений и обеспечение его соответствия утвержденному типу осуществляется путем идентификации и защиты от несанкционированного доступа.

Идентификация ПО системы осуществляется путем отображения на мониторе ИВК и APM оператора системы структуры идентификационных данных. Идентификационные данные ПО системы указаны в таблице 2.

ПО системы защищено от несанкционированного доступа, изменения алгоритмов и установленных параметров путем ввода логина и пароля, ведения журнала событий, доступного только для чтения. Доступ к ПО системы для пользователя закрыт. При изменении установленных параметров (исходных данных) в ПО системы обеспечивается подтверждение изменений, проверка изменений на соответствие требованиям реализованных алгоритмов, при этом сообщения о событиях (изменениях) записываются в журнал событий, доступный только для чтения. Данные, содержащие результаты измерений, защищены от любых искажений путем кодирования.

Уровень защиты ПО «высокий» в соответствии с Р 50.2.077-2014.

Таблица 2 – Идентификационные данные программного обеспечения

Идентификационные данные (признаки)	APM «Rate APM	«OCTOPUS-L»
	оператора УУН»	(основной и
	(основной и резервный)	резервный)
Идентификационное наименование ПО	RateCalc	Formula.o
Номер версии (идентификационный номер) ПО	2.3.1.1	6.10
Цифровой идентификатор ПО	B6D270DB	24821CE6

Метрологические и технические характеристики

Таблица 3 – Состав и основные метрологические характеристики измерительных каналов

Номер ИК	Наимено- вание ИК	Коли-	Соста	Состав ИК вторичная часть	Диапазон измерений,	Пределы допускаемой
		ИК	измерительные преобразователи	1	т/ч	относительной погрешности, %
1-5	ИК массового расхода нефти	5	Счетчики- расходомеры массовые Micro Motion мод. CMF 400	Комплексы измерительно-вычислительные ОКТОПУС-Л (ОСТОРUS-L)	от 35 до 1248	±0,25

Примечание — пределы допускаемой относительной погрешности нормированы при использовании измерительной линии в качестве рабочей.

Таблица 4 – Метрологические характеристики

Наименование характеристики	Значение
Диапазон массового расхода, T/Y (M^3/Y)	от 35 до 1248
	(от 41 до 1500)
Пределы допускаемой относительной погрешности:	
– массы брутто нефти, %	±0,25
– массы нетто нефти, %	±0,35

Таблица 5 – Основные технические характеристики

Наименование характеристики	Значение	
Количество измерительных линий	5 (4 рабочих,	
	1 контрольно-резервная)	
Измеряемая среда	нефть по ГОСТ Р 51858-2002	
Характеристики измеряемой среды:		
– температура, °С	от +30 до +50	
– давление, МПа	от 0,2 до 6,3	
- плотность при температуре +20 °C, кг/м ³	от 850,1 до 870,0	
– массовая доля воды в нефти, %, не более	0,5	
– массовая доля механических примесей, %, не более	0,05	
– массовая концентрация хлористых солей, мг/дм ³ , не более	100	
– давление насыщенных паров, кПа, не более	66,7	
- содержание свободного газа	не допускается	
Режим работы	непрерывный	
Режим работы ТПУ	периодический	
Температура окружающего воздуха, °С:		
– для первичных измерительных преобразователей	от +20 до +35	
– для ИВК и AРМ оператора	от +20 до +30	

Знак утверждения типа

наносится на титульный лист инструкции по эксплуатации СИКН типографским способом.

Комплектность средства измерений

Комплектность СИКН представлена в таблице 6.

Таблица 6 – Комплектность средства измерений


Наименование	Обозначение	Коли-
		чество
Система измерений количества и показателей качества нефти		1 экз.
(СИКН) № 656 на ЦПС Юг Новопортовского НГКМ		
ООО «Газпромнефть-Ямал»		
Инструкция по эксплуатации системы измерений количества и		1 экз.
показателей качества нефти № 656 на ЦПС Юг		
Новопортовского НГКМ ООО «Газпромнефть-Ямал»		
ГСИ. Система измерений количества и показателей качества	ВЯ.10.1703075.00 МП	1 экз.
нефти № 656 на ЦПС Юг Новопортовского НГКМ		
ООО «Газпромнефть-Ямал». Методика поверки		

Сведения о методиках (методах) измерений

приведены в документе «Масса нефти. Методика измерений системой измерений количества и показателей качества нефти СИКН 656 ЦПС Юг ООО «Газпромнефть-Ямал», свидетельство об аттестации методики измерений № 1546/01.00248-2014/2020 от 12 ноября 2020 г.

Нормативные документы, устанавливающие требования к системе измерений количества и показателей качества нефти (СИКН) № 656 на ЦПС Юг Новопортовского НГКМ ООО «Газпромнефть-Ямал»

Приказ Росстандарта от 07.02.2018 № 256 «Об утверждении Государственной поверочной схемы для средств измерений массы и объема жидкости в потоке, объема жидкости и вместимости при статических измерениях, массового и объемного расходов жидкости».

