УТВЕРЖДЕНО

приказом Федерального агентства по техническому регулированию и метрологии от «29» марта 2021 г. №425

 Лист № 1

 Регистрационный № 81292-21
 Всего листов 7

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) тяговой подстанции «Тарасиха» Горьковской ЖД — филиала ОАО «Российские железные дороги» в границах Нижегородской области

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) тяговой подстанции «Тарасиха» Горьковской ЖД — филиала ОАО «Российские железные дороги» в границах Нижегородской области (далее по тексту - АИИС КУЭ) предназначена для измерений активной и реактивной электроэнергии, сбора, обработки, хранения и передачи полученной информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную трехуровневую автоматизированную систему с централизованным управлением и распределенной функцией измерения.

АИИС КУЭ включает в себя следующие уровни:

Первый уровень - включает в себя измерительные трансформаторы тока (ТТ), измерительные трансформаторы напряжения (ТН), счетчики активной и реактивной электроэнергии (счетчики), вторичные измерительные цепи и технические средства приемапередачи данных;

Второй уровень - измерительно-вычислительный комплекс регионального Центра энергоучета, реализован на базе устройства сбора и передачи данных (УСПД), выполняющего функции сбора, хранения результатов измерений и передачи их на уровень ИВК.

Третий уровень - измерительно-вычислительный комплекс Центра сбора данных АИИС КУЭ (ИВК), включающий в себя сервер сбора данных, программное обеспечение (ПО) «Энергия Альфа 2», устройство синхронизации времени УСВ-3 (УСВ), каналы сбора данных с уровня регионального Центра энергоучета, каналы передачи данных субъектам оптового рынка электроэнергии и мощности (ОРЭМ).

Первичные токи и напряжения преобразуются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на измерительные входы счетчиков электроэнергии. В счетчиках мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчиков вычисляются соответствующие мгновенные значения активной, реактивной и полной мощности без учета коэффициентов трансформации, которые усредняются за 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мощности.

Электрическая энергия, как интеграл по времени от средней за период 0.02 с мощности, вычисляется для интервалов времени 30 мин.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение вычисленных мгновенных значений мощности на интервале времени усреднения 30 мин.

Цифровой сигнал с выходов счетчиков при помощи технических средств приемапередачи данных поступает на входы УСПД регионального Центра энергоучета, где производится обработка измерительной информации (умножение на коэффициенты трансформации), сбор и хранение результатов измерений. Далее по основному каналу связи, организованному на базе волоконно-оптической линии связи, данные передаются в ЦСОД ОАО «РЖД», где происходит оформление отчетных документов.

Дальнейшая передача информации от ЦСОД ОАО «РЖД» третьим лицам осуществляется по каналу связи сети Internet в формате XML-макетов в соответствии с регламентами ОРЭМ.

ЦСОД ОАО "РЖД" также обеспечивает прием измерительной информации от АИИС КУЭ утвержденного типа третьих лиц, получаемой в формате XML-макетов в соответствии с регламентами ОРЭМ в автоматизированном режиме посредством электронной почты сети Internet.

АИИС КУЭ оснащена системой обеспечения единого времени (СОЕВ), которая охватывает все уровни системы. СОЕВ выполняет законченную функцию измерений времени, имеет нормированные метрологические характеристики и обеспечивает автоматическую синхронизацию времени. СОЕВ создана на основе устройства синхронизации времени УСВ-3 (УСВ), получающего сигналы от глобальных навигационных спутниковых систем (ГНСС) ГЛОНАСС/GPS. В состав СОЕВ входят часы УСПД, счетчиков, ЦСОД ОАО «РЖД».

ЦСОД ОАО «РЖД» оснащен устройством синхронизации времени УСВ-3 (УСВ). Сравнение показаний часов ЦСОД ОАО «РЖД» и УСВ происходит при каждом сеансе связи ЦСОД – УСВ. Синхронизация осуществляется при расхождении показаний на величину более чем ± 1 с.

Сравнение показаний часов УСПД и ЦСОД ОАО «РЖД» происходит при каждом сеансе связи УСПД – ЦСОД. Синхронизация осуществляется при расхождении показаний на величину более чем ± 1 с.

Сравнение показаний часов счетчиков и УСПД происходит при каждом сеансе связи счетчик — УСПД. Синхронизация осуществляется при расхождении показаний на величину более чем ± 1 с.

Журналы событий счетчика электроэнергии, УСПД и сервера отражают: время (дата, часы, минуты) коррекции часов указанных устройств и расхождение времени в секундах корректируемого и корректирующего устройств в момент, непосредственно предшествующий корректировке.

Нанесение знака поверки на средство измерений не предусмотрено.

Программное обеспечение

В АИИС КУЭ используется ПО «Энергия Альфа 2».

ПО «Энергия Альфа 2» используется при коммерческом учете электрической энергии и обеспечивает обработку, организацию учета и хранения результатов измерения, а также их отображение, распечатку с помощью принтера и передачу в форматах, предусмотренных регламентом оптового рынка электроэнергии.

Идентификационные данные ПО «Энергия Альфа 2», установленного в ИВК, указаны в таблице 1.

Таблица 1 - Идентификационные данные ПО «Энергия Альфа 2»

Идентификационные данные (признаки)	Значение		
Идентификационное наименование ПО	Энергия Альфа 2		
Номер версии (идентификационный номер) ПО	не ниже 2.0.3.16		
Цифровой идентификатор ПО (MD 5, enalpha.exe)	17e63d59939159ef304b8ff63121df60		

Уровень защиты ПО «Энергия Альфа 2» от непреднамеренных и преднамеренных изменений – «высокий» в соответствии с Р 50.2.077-2014.

Метрологические и технические характеристики

Метрологические и технические характеристики ИК АИИС КУЭ приведены в таблицах 2 - 4.

Таблица 2 - Состав ИК АИИС КУЭ

1 4031	аолица 2 - Состав ИК АИИС КУЭ Состав ИК АИИС КУЭ								
№№ ИК	Laguadonia		Трансформатор напряжения	Счетчик	УСПД/ УСВ				
	ТП «Тарасиха»								
1	ВЛ 110 кВ Линда-Тарасиха (Ввод 1)	ТОГФ-110III- УХЛ1* кл.т. 0,2S Ктт = 400/5 Регистрационный номер в Федеральном информационном фонде (рег. №) 61432-15	НАМИ-110 УХЛ1 кл.т. 0,2 Ктн = 110000/√3/100/√3 рег. № 60353-15	A1802RAL-P4GB- DW-4 кл.т. 0,2S/0,5 per. № 31857-11	RTU-327 per. № 41907-09				
2	ВЛ 110 кВ «159» (Ввод 2)	ТОГФ-110III- УХЛ1* кл.т. 0,2S Ктт = 400/5 per. № 61432-15	НАМИ-110 УХЛ1 кл.т. 0,2 $K_{TH} = 110000/\sqrt{3}/100/\sqrt{3}$ per. № 60353-15	A1802RAL-P4GB- DW-4 кл.т. 0,2S/0,5 рег. № 31857-11	УСВ-3 Рег. № 51644-12				
3	Рабочая перемычка 110 кВ	ТОГФ-110III- УХЛ1* кл.т. 0,2S Ктт = 400/5 рег. № 61432-15	НАМИ-110 УХЛ1 кл.т. 0,2 $K_{TH} = 110000/\sqrt{3}/100/\sqrt{3}$ рег. № 60353-15	A1802RAL-P4GB- DW-4 кл.т. 0,2S/0,5 рег. № 31857-11					

Примечания

- 1 Допускается замена ТТ, ТН и счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в таблице 2, при условии, что Предприятие-владелец АИИС КУЭ не претендует на улучшение указанных в таблице 3 метрологических характеристик.
 - 2 Допускается замена УСПД, УСВ на аналогичные утвержденных типов.
- 3 Замена оформляется техническим актом в установленном на Предприятии-владельце АИИС КУЭ порядке, вносят изменения в эксплуатационные документы. Технический акт хранится совместно с эксплуатационными документами на АИИС КУЭ как их неотъемлемая часть.

Таблица 3 - Метрологические характеристики ИК

Таолица 3 - Метрологические характеристики ИК									
Метрологические характеристики ИК (активная энергия)									
Номер ИК	Диапазон значений силы	Границы интервала основной относительной погрешности ИК $(\pm \delta)$, %			Границы интервала относительной погрешности ИК в рабочих условиях эксплуатации (±δ), %				
	тока	cos φ = 1,0	cos φ = 0,87	cos φ = 0,8	cos φ = 0,5	cos φ = 1,0	cos φ = 0,87	cos φ = 0,8	cos φ = 0,5
1 - 3 (TT 0,2S;	$\begin{array}{c} 0.01(0.02)I_{\rm H1} \leq I_1 < \\ 0.05I_{\rm H1} \end{array}$	1,0	1,1	1,1	1,8	1,2	1,2	1,3	2,0
TH 0,23,	$0.05I_{\rm H1} \le I_1 < 0.2I_{\rm H1}$	0,6	0,7	0,8	1,3	0,8	0,9	1,0	1,4
Сч 0,2S)	$0.2I_{\rm H1} \le I_1 < I_{\rm H1}$	0,5	0,5	0,6	0,9	0,8	0,8	0,9	1,2
C4 0,25)	$I_{\text{H}1} \le I_1 \le 1,2I_{\text{H}1}$	0,5	0,5	0,6	0,9	0,8	0,8	0,9	1,2
	Метрологические характеристики ИК (реактивная энергия)								
Номер ИК	Диапазон значений силы	Границы интервала основной относительной погрешности ИК $(\pm \delta)$, %			Границы интервала относительной погрешности ИК в рабочих условиях эксплуатации $(\pm \delta)$, %				
	тока		$\phi = 0.8$ $\phi = 0.6$	cos φ (sin φ =			= 0.8 = 0.6)	cos φ (sin φ =	
1 - 3 (TT 0,2S;	$\begin{array}{c} 0.01(0.02)I_{\rm H1} \leq I_1 < \\ 0.05I_{\rm H1} \end{array}$	1,8		1,	5	2,	,3	2,	,0
TH 0,23,	$0.05I_{\text{H}1} \le I_1 < 0.2I_{\text{H}1}$		1,4	0,			,0		,6
Сч 0,5)	$0.2I_{\text{H}1} \le I_1 < I_{\text{H}1}$		1,0	0,			,8		,5
C 1 0,5)	$I_{\text{H}1} \le I_1 \le 1,2I_{\text{H}1}$		1,0	0,	8	1,	,8	1,	,5
Пределы допускаемых смещений шкалы времени СОЕВ АИИС КУЭ относительно национальной шкалы времени UTC(SU), с					:	± 5			
шкалы ыр		1							

Примечания

- 1 Характеристики погрешности ИК даны для измерений электроэнергии (получасовая).
- 2~B качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности P=0.95.
- 3 Погрешность в рабочих условиях указана при температуре окружающего воздуха в месте расположения счетчиков электроэнергии от плюс 5 до плюс 35°C.

Таблица 4 – Основные технические характеристики ИК

Наименование характеристики	Значение
1	2
Нормальные условия:	
параметры сети:	
- напряжение, % от $U_{\scriptscriptstyle ext{HOM}}$	от 99 до 101
- Tok, $\%$ ot I_{hom}	от 100 до 120
 коэффициент мощности, соѕф 	0,87
- температура окружающей среды, °С	от +21 до +25

Продолжение таблицы 4

1	2
Условия эксплуатации:	
параметры сети:	
- напряжение, % от U _{ном}	от 90 до 110
- ток, $\%$ от $\mathrm{I}_{\scriptscriptstyle \mathrm{HOM}}$	от 1(2) до 120
- коэффициент мощности, соsф	от 0.5 _{инд} до 0.8 _{емк}
диапазон рабочих температур окружающего воздуха, °С:	
- для TT и TH	от -55 до +40
- для счетчиков	от -40 до +65
- для УСПД	от +1 до +50
- для УСВ:	
- антенный блок	от -40 до +70
- блок питания и интерфейсы	от -25 до +60
магнитная индукция внешнего происхождения, мТл, не более	0,5
Надежность применяемых в АИИС КУЭ компонентов:	
электросчетчики Альфа А1800:	
- среднее время наработки на отказ, ч, не менее	120000
- среднее время восстановления работоспособности, ч, не более	72
УСПД RTU-327:	
- среднее время наработки на отказ, ч, не менее	35000
- среднее время восстановления работоспособности, ч, не более	24
YCB:	
- среднее время наработки на отказ, ч, не менее	45000
- среднее время восстановления работоспособности, ч, не более	2
ИВК:	
- коэффициент готовности, не менее	0,99
- среднее время восстановления работоспособности, ч, не более	1
Глубина хранения информации	
электросчетчики:	
- тридцатиминутный профиль нагрузки в двух направлениях,	
сут, не менее	45
УСПД:	
- суточные данные о тридцатиминутных приращениях	
электроэнергии по каждому каналу и электроэнергии, потребленной	
за месяц, сут, не менее	45
ИВК:	
- результаты измерений, состояние объектов и средств	
измерений, лет, не менее	3,5

Надежность системных решений:

- защита от кратковременных сбоев питания сервера, УСПД с помощью источника бесперебойного питания;
- резервирование каналов связи: информация о результатах измерений может передаваться в организации-участники оптового рынка электроэнергии с помощью электронной почты и сотовой связи.

В журналах событий фиксируются факты:

- журнал счётчика:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике;
- журнал УСПД:
 - параметрирования;

- пропадания напряжения;
- коррекции времени в счетчике и УСПД;
- пропадание и восстановление связи со счетчиком;

Защищённость применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
 - электросчётчика;
 - промежуточных клеммников вторичных цепей напряжения;
 - испытательной коробки;
 - УСПД;
- защита на программном уровне информации при хранении, передаче, параметрировании:
 - счетчика электрической энергии;
 - УСПД;

Возможность коррекции времени в:

- счетчиках электрической энергии (функция автоматизирована);
- УСПД (функция автоматизирована);
- сервере ИВК (функция автоматизирована).

Возможность сбора информации:

- о состоянии средств измерений (функция автоматизирована).

Цикличность:

- измерений 30 мин (функция автоматизирована);
- сбора 30 мин (функция автоматизирована).

Знак утверждения типа

наносится на титульные листы эксплуатационной документации АИИС КУЭ типографским способом.

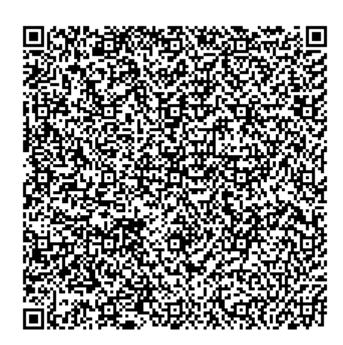
Комплектность средства измерений

В комплект поставки входит техническая документация на АИИС КУЭ. Комплектность АИИС КУЭ представлена в таблице 5.

Таблица 5 - Комплектность средства измерений

Наименование	Обозначение	Количество
Трансформаторы тока	ТОГФ-110-ІІІ УХЛ1*	9 шт.
Трансформаторы напряжения	НАМИ-110 УХЛ1	6 шт.
Счетчики электрической энергии трехфазные многофункциональные	Альфа А1800	3 шт.
Устройство сбора и передачи данных	RTU-327	1 шт.
Устройства синхронизации времени	УСВ-3	1 шт.
Методика поверки	МП 206.1-118-2020	1 экз.
Паспорт-формуляр	82462078.411711.001.30-1.ПС-ФО	1 экз.

Сведения о методиках (методах) измерений


приведены в документе «Методика измерений электрической энергии с использованием системы автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) тяговой подстанции «Тарасиха» Горьковской ЖД — филиала ОАО «Российские железные дороги» в границах Нижегородской области», аттестованном ФГУП «ВНИИМС», аттестат аккредитации № RA.RU.311787 от 02.08.2016 г.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) тяговой подстанции «Тарасиха» Горьковской ЖД – филиала ОАО «Российские железные дороги» в границах Нижегородской области

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия

ГОСТ 34.601-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания

