УТВЕРЖДЕНО

приказом Федерального агентства по техническому регулированию и метрологии от «30» марта 2021 г. №430

Регистрационный № 81382-21

Лист № 1 Всего листов 7

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ПАО «Транснефть» в части АО «Транснефть – Диаскан»

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ПАО «Транснефть» в части АО «Транснефть – Диаскан» (далее - АИИС КУЭ) предназначена для измерений активной и реактивной электроэнергии, измерения и синхронизации времени, формирования отчетных документов и передачи информации в АО «АТС», АО СО «ЕЭС» и прочим заинтересованным организациям в рамках согласованного регламента.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, многоуровневую автоматизированную систему с централизованным управлением и распределённой функцией измерений.

АИИС КУЭ включает в себя следующие уровни:

- 1-й уровень измерительно-информационный комплекс (ИИК), который включает в себя трансформаторы тока (далее ТТ), трансформаторы напряжения (далее ТН) и счетчик активной и реактивной электроэнергии, вторичные измерительные цепи и технические средства приема-передачи данных. Метрологические и технические характеристики измерительных компонентов АИИС КУЭ приведены в таблицах 2-5.
- 2-й уровень информационно-вычислительный комплекс электроустановки (ИВКЭ), включающий в себя устройство сбора и передачи данных (УСПД) на базе ЭКОМ-3000, технические средства приема-передачи данных, каналы связи, для обеспечения информационного взаимодействия между уровнями системы.
- 3-й уровень информационно-вычислительный комплекс (ИВК), включающий в себя каналообразующую аппаратуру, сервер БД АИИС КУЭ, сервер опроса, сервер приложений, сервер резервного копирования, автоматизированные рабочие места персонала (APM), сервер точного времени ССВ-1Г и программное обеспечение (далее ПО) ПК «Энергосфера».

Первичные токи и напряжения преобразуются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности, которые усредняются за период 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мощности. Электрическая энергия, как интеграл по времени от средней за период 0,02 с мощности, вычисляется для интервалов времени 30 мин.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение мгновенных значений мощности на интервале времени усреднения 30 мин.

Результаты измерений электроэнергии передаются в целых числах и соотнесены с единым календарным временем.

Цифровой сигнал с выходов счетчиков измерительных каналов №3-8 поступает на входы УСПД, где осуществляется хранение измерительной информации, ее накопление и передача накопленных данных на верхний уровень системы, а также отображение информации по подключенным к УСПД устройствам. Измерительные каналы №1, 2 функционируют с использованием прямого опроса сервером баз данных (БД) счетчиков электроэнергии посредством GPRS- модема и не используют уровень ИВКЭ. Вычисление электроэнергии и мощности с учетом коэффициентов трансформации ТТ и ТН происходит на уровне ИВК.

На верхнем — третьем уровне системы выполняется обработка измерительной информации, в частности вычисление электрической энергии и мощности с учетом коэффициентов трансформации ТТ и ТН, формирование и хранение поступающей информации, оформление отчетных документов, отображение информации на мониторах АРМ и передача данных в организации — участники оптового рынка электрической энергии и мощности через каналы связи.

Данные хранятся в сервере БД. Последующее отображение собранной информации происходит при помощи АРМ. Данные от ИВК передаются на АРМ, установленные в соответствующих службах, по сети Ethernet. Полный перечень информации, получаемой на АРМ, определяется техническими характеристиками многофункциональных электросчетчиков и уровнем доступа АРМ к базе данных и сервера БД.

ИВК является единым центром сбора и обработки данных всех АИИС КУЭ организаций системы ПАО «Транснефть».

Система осуществляет обмен данными между АИИС КУЭ смежных субъектов по каналам связи Internet в формате xml-файлов.

Данные по группам точек поставки в организации — участники ОРЭ и РРЭ, в том числе АО «АТС», АО «СО ЕЭС» и смежным субъектам, передаются из ИВК с учетом агрегации данных по всем АИИС КУЭ ОАО «АК Транснефть» (регистрационный номер в Федеральном информационном фонде 54083-13) с учетом полученных данных по точкам измерений, входящим в настоящую АИИС КУЭ и АИИС КУЭ смежных субъектов в виде хml-файлов в соответствии с Приложением 11.1.1 к Положению о порядке получения статуса субъекта оптового рынка и ведения реестра субъектов оптового рынка, в том числе с использованием ЭЦП субъекта рынка.

АИИС КУЭ оснащена системой обеспечения единого времени (СОЕВ). СОЕВ предусматривает поддержание единого календарного времени на всех уровнях системы (ИИК, ИВКЭ, ИВК). Синхронизация часов сервера БД с национальной шкалой времени UTC(SU) обеспечивается сервером синхронизации времени ССВ-1Г, входящим в состав центра сбора и обработки данных (ЦСОД). ССВ-1Г непрерывно обрабатывает данные, поступающие от антенного блока и содержащие точное время UTC(SU) спутниковой навигационной системы. Информация о точном времени распространяется устройством в сети TСР/ІР согласно протоколу NTP (Network Time Protocol). ССВ-1Г формирует сетевые пакеты, содержащие оцифрованную метку национальной шкалы времени, полученную по сигналам спутниковой навигационной системы ГЛОНАСС, с учетом задержки на прием пакета и выдачу ответного отклика. Сервер синхронизации времени обеспечивает постоянную и непрерывную синхронизацию времени сервера БД. В случае выхода из строя основного сервера синхронизации времени ССВ-1Г используется резервный.

Синхронизация шкалы времени УСПД осуществляется по сигналам единого времени, принимаемым через устройство синхронизации системного времени (УССВ), реализованного на ГЛОНАСС/GPS-приемнике в составе УСПД. Шкала времени УСПД переодически сравнивается со временем ГЛОНАСС/GPS (не реже 1 раза в сутки), синхронизация шкалы времени УСПД проводится независимо от величины расхождения шкал времени.

Сличение шкалы времени счетчиков измерительных каналов №1, 2 со шкалой времени сервера БД происходит при каждом обращении к счетчикам, но не реже одного раза в сутки. Синхронизация шкалы времени счетчиков проводится при расхождении шкал времени счетчика и сервера более чем на ±1 с. Сличение шкалы времени счетчиков измерительных каналов №3-8 со шкалой времени УСПД происходит при каждом обращении к счетчикам, но не реже одного раза в сутки. Синхронизация шкалы времени счетчиков проводится при расхождении шкал времени счетчика и УСПД более чем на ±1 с.

Синхронизация шкалы времени УСПД осуществляется по сигналу точного времени ГЛОНАСС/GPS-модуля, встроенного в УСПД. В случае неисправности, ГЛОНАСС/GPS-модуля имеется возможность синхронизации шкалы времени УСПД от ИВК ПАО «Транснефть».

Журналы событий счетчиков, УСПД и сервера БД отображают факты коррекции времени до и после коррекции и величины коррекции времени, на которую было скорректировано устройство.

Программное обеспечение

В АИИС КУЭ используется ПО ПК «Энергосфера» версии не ниже 8.0. Метрологически значимая часть содержится в модуле, указанном в таблице 1. ПО ПК «Энергосфера» обеспечивает защиту программного обеспечения и измерительной информации паролями в соответствии с правами доступа. Средством защиты данных при передаче является кодирование данных, обеспечиваемое программными средствами ПО ПК «Энергосфера».

Метрологически значимой частью специализированного программного обеспечения АИИС КУЭ является библиотека pso_metr.dll. Данная библиотека выполняет функции синхронизации, математической обработки информации, поступающей от приборов учета, и является неотъемлемой частью АИИС КУЭ.

Таблица 1 –	Метр	ологические	значимые	модули ПО

Идентификационные признаки	Значение	
Идентификационное наименование ПО	ПК «Энергосфера»	
	Библиотека pso_metr.dll	
Номер версии (идентификационный номер) ПО	1.1.1.1	
Цифровой идентификатор ПО	CBEB6F6CA69318BED976E08A2BB7814B	
Алгоритм вычисления цифрового идентификатора ПО	MD5	

ПО ПК «Энергосфера» не влияет на метрологические характеристики ИК АИИС КУЭ и СОЕВ, указанные в таблице 2.

Уровень защиты ΠO от непреднамеренных и преднамеренных изменений - «высокий» в соответствии с P 50.2.077-2014.

Метрологические и технические характеристики

Состав измерительных каналов АИИС КУЭ и их основные метрологические характеристики приведены в таблицах 2-5.

Таблица 2 - Состав измерительных каналов АИИС КУЭ

	олица 2 - Состав измерит	слыных капалов А	Состав измерите	льного канала	
Номер ИК	Наименование точки измерений	TT	ТН	Счётчик	УСПД/Сервер синхронизаци и времени/ Сервер БД
1	2	3	4	5	6
1	ПС №588 "Ива" 110/10кВ, КРУН-10кВ, 1 сек. 10кВ, яч.3 Фидер №14	ТЛО -10 Кл. т. 0,2s 400/5 Рег № 25433-11	НАМИТ-10-2 УХЛ2 Кл. т. 0,5 10000/100 Рег № 16687-07	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5 Per. № 36697-17	CB-1Γ Per № 58301- 14, HP Pro-Liant BL460 Gen8, HP Pro-Liant BL460 Gen6
2	ПС №588 "Ива" 110/10кВ, КРУН-10кВ, 2 сек. 10кВ, яч.31, Фидер №25	ТЛО -10 Кл. т. 0,2s 400/5 Рег № 25433-11	НАМИТ-10-2 УХЛ2 Кл. т. 0,5 10000/100 Рег № 16678-07	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5 Per. № 36697-17	CCB-1Γ P. HP Pro-L. Gen8, HF BL46
3	Научно- производственная база AO «Транснефть- Диаскан», ЗРУ-10кВ, 1 сек. 10 кВ, яч. 17, Ввод №1 10 кВ	ТЛО-10 Кл. т. 0,2s 400/5 Рег №25433-11	ЗНОЛП-ЭК Кл. т. 0,2 10000:√3/100:√3 Рег № 68841-17	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5 Per. № 36697-17	
4	Научно- производственная база AO «Транснефть- Диаскан», ЗРУ-10кВ, 2 сек. 10 кВ, яч. 18, Ввод №2 10 кВ	ТЛО-10 Кл. т. 0,2s 400/5 Рег №25433-11	ЗНОЛП-ЭК Кл. т. 0,2 10000:√3/100:√3 Рег № 68841-17	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5 Рег. № 36697-17	-14 L460 Gen6
5	Научно- производственная база АО «Транснефть- Диаскан», ЗРУ-10кВ, 1 сек. 10 кВ, яч. 23	ТЛО-10 Кл. т. 0,2s 600/5 Per №25433-11	ЗНОЛП-ЭК Кл. т. 0,2 10000:√3/100:√3 Рег № 68841-17	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5 Рег. № 36697-17	A-3000 Per. № 17049-14 C Per № 58301-14, Gen8, HP Pro-Liant BL460 Gen6
6	Научно- производственная база АО «Транснефть- Диаскан», ЗРУ-10кВ, 2 сек. 10 кВ, яч. 24	ТЛО-10 Кл. т. 0,2s 600/5 Рег №25433-11	ЗНОЛП-ЭК Кл. т. 0,2 10000:√3/100:√3 Рег № 68841-17	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5 Рег. № 36697-17	
7	AO «Транснефть- Диаскан», ТП-78 10/0,4 кВ, РУ- 10кВ, 1 сек. 10кВ, яч.4, Основной ввод №1 10 кВ	ТЛК-СТ-10 Кл. т. 0,2s 100/5 Рег № 58720-14	НАМИТ-10-2 УХЛ2 Кл. т. 0,5 10000/100 Per № 16687-02	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5 Рег. № 36697-17	УСПД: ЭКОІ ССВ-11 HP Pro-Liant BL460
8	AO «Транснефть- Диаскан», ТП-78 10/0,4 кВ, РУ- 10кВ, сек. 10кВ, яч.7, Основной ввод №2 10 кВ	ТЛК-СТ-10 Кл. т. 0,2s 100/5 Рег № 58720-14	НАМИТ-10-2 УХЛ2 Кл. т. 0,5 10000/100 Рег № 16687-02	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5 Рег. № 36697-17	

Примечания:

- 1. Допускается замена измерительных трансформаторов, счетчиков, УСПД, ССВ на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в таблице 2, при условии, что предприятие-владелец не претендует на улучшение метрологических характеристик.
- 2. Замена оформляется в установленном на предприятии порядке. Акт хранится совместно с настоящим описанием типа АИИС КУЭ как его неотъемлемая часть.

Таблица 3 - Основные метрологические характеристика ИК

Номер ИК	Вид электрической	Границы основной	Границы погрешности в
	энергии (мощности)	погрешности, %	рабочих условиях, %
1, 2, 7, 8	Активная	±1,3	±1,9
	Реактивная	±2,1	±3,6
3, 4, 5, 6	Активная	±0,6	±1,1
	Реактивная	±1,0	±2,1
Пределы допускаемой погрешности СОЕВ, с			±5

Примечания:

- 1. Характеристики погрешности ИК даны для измерений электроэнергии (получасовой).
- 2. В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0,95.
- 3. Границы погрешности в рабочих условиях указаны для $\cos \varphi = 0.8$, 0.2Iн \leq I<Iн и температуры окружающего воздуха в месте расположения счетчика электроэнергии для ИК № 1-8 от плюс 5 до плюс 35 °C.

Таблица 4 – Основные технические характеристики ИК				
Наименование характеристики	Значение			
Количество измерительных каналов	8			
Нормальные условия:				
параметры сети:				
- напряжение, % от U _{ном}	от 98 до 102			
- Tok, $\%$ ot I_{hom}	от 100 до 120			
- частота, Гц	от 49,85 до 50,15			
- коэффициент мощности соsф	0,9			
- температура окружающей среды, °С	от +21 до +25			
Условия эксплуатации:				
параметры сети:				
- напряжение, % от U _{ном}	от 90 до 110			
- tok, $\%$ ot I_{hom}	от 5 до 120			
- коэффициент мощности	от 0,5 инд. до 0,8 емк.			
- частота, Гц	от 49,6 до 50,4			
- температура окружающей среды для ТТ и ТН, °С	от -40 до +70			
- температура окружающей среды в месте расположения				
электросчетчиков, °С:	от +5 до +35			
- температура окружающей среды в месте расположения				
сервера, УСПД и ССВ-1Г, °С	от +15 до +35			
Надежность применяемых в АИИС КУЭ компонентов:				
Счетчики:				
- среднее время наработки на отказ, ч, не менее	220000			
- среднее время восстановления работоспособности, сут, не	3			
более				
УСПД:				
- среднее время наработки на отказ, ч, не менее	100000			
- среднее время восстановления работоспособности, ч, не	24			
более				
Сервер БД АИИС КУЭ:	2 1 7 0 0			
- среднее время наработки на отказ, ч, не менее	264599			
- среднее время восстановления работоспособности, ч, не	2			
более				
CCB-1Γ:	1,5000			
- среднее время наработки на отказ, ч, не менее	15000			
- среднее время восстановления работоспособности, ч, не				
более	2			

Наименование характеристики	Значение
Глубина хранения информации	
Счетчики:	
- тридцатиминутный профиль нагрузки в двух направлениях,	
сут, не менее	113
- при отключении питания, лет, не менее	10
УСПД:	
- тридцатиминутный профиль нагрузки в двух направлениях,	
сут, не менее	45
- при отключении питания, лет, не менее	10
Сервер:	
- хранение результатов измерений и информации о состоянии	
средств измерений, лет, не менее	3,5

Надежность системных решений:

- резервирование питания сервера с помощью источника бесперебойного питания и устройства ABP;
- резервирование каналов связи: информация о результатах измерений может передаваться в организации—участники оптового рынка электроэнергии с помощью электронной почты и сотовой связи.

В журналах событий фиксируются факты:

- журнал счётчика:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике.

Защищённость применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
 - электросчётчика;
 - промежуточных клеммников вторичных цепей напряжения;
 - испытательной коробки;
 - сервера;
- защита на программном уровне информации при хранении, передаче, параметрировании:
 - электросчетчика;
 - сервера.

Возможность коррекции времени в:

– электросчетчиках (функция автоматизирована).

Возможность сбора информации:

– о результатах измерений (функция автоматизирована).

Цикличность:

- измерений приращений электроэнергии на интервалах 30 минут (функция автоматизирована);
- сбора результатов измерений не реже одного раза в сутки (функция автоматизирована).

Знак утверждения типа

наносится на титульные листы эксплутационной документации АИИС КУЭ типографским способом.

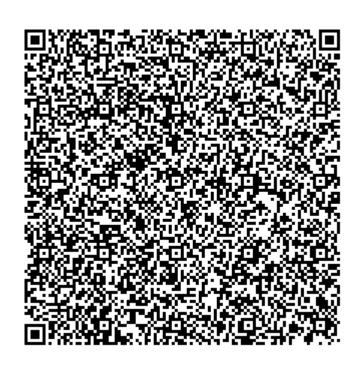
Комплектность средства измерений

Комплектность АИИС КУЭ представлена в таблице 5.

Таблица 5 - Комплектность АИИС КУЭ

Наименование	Тип	Количество, шт./экз
Трансформатор тока	ТЛО-10	14
Трансформатор тока	ТЛК-СТ-10	6
Трансформатор напряжения	НАМИТ-10-2 УХЛ2	4
Трансформатор напряжения	знолп-эк	12
Счётчик электрической энергии многофункциональный	CЭT-4TM.03M	8
Устройство сбора и передачи данных	ЭКОМ-3000	1
Сервер синхронизации времени	ССВ-1Г	2
Программное обеспечение	ПК «Энергосфера»	1
Сервер БД	Proliant HP BL460	2
Методика поверки	МП ТНЭ-018-2020	1
Формуляр	ТНЭ.ФО.018.М	1

Сведения о методиках (методах) измерений количества электрической энергии, измерения и синхронизации времени


приведены в документе «Методика измерений электрической энергии и мощности с использованием системы автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ПАО «Транснефть» в части АО «Транснефть – Диаскан», аттестованном ООО «Транснефтьэнерго», аттестат аккредитации № RA.RU.311308 от $29.10.2015 \, \Gamma$.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ПАО «Транснефть» в части АО «Транснефть – Диаскан»

 Γ ОСТ Р 8.596-2002 Γ СИ. Метрологическое обеспечение измерительных систем. Основные положения.

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия

ГОСТ 34.601-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания.

