УТВЕРЖДЕНО

приказом Федерального агентства по техническому регулированию и метрологии от «13» июля 2021 г. № 1325

Лист № 1 Всего листов 7

Регистрационный № 82172-21

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Подсистемы топливоизмерительные бортовых комплексов «АВК-ТОР»

Назначение средства измерений

Подсистемы топливоизмерительные бортовых комплексов «АВК-ТОР» (далее по тесту – подсистемы) предназначены для измерений плотности, температуры и уровня топлива и вычисления объема и массы топлива в топливных баках при эксплуатации маневровых тепловозов ЧМЭ3, ТЭМ2, ТЭМ18, ТЭМ7 всех индексов (далее по тексту – в/и) и магистральных тепловозов ТЭ10, ТЭ116, ДМ62, М62, 2М62, 2М62У, 3М62 и 3М62У в/и (устанавливается на каждую секцию).

Описание средства измерений

Принцип действия подсистем основан на одновременном измерении плотности, температуры и уровня топлива в топливном баке при помощи датчиков с последующим вычислением объема и массы топлива в топливном баке с использованием градуировочных таблип.

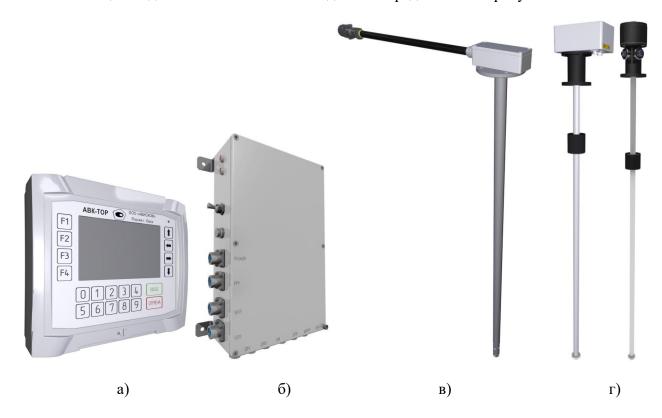
Подсистемы состоят из:

- датчика уровня топлива левый (ДУТл);
- датчика уровня топлива правый (ДУТп);
- датчика плотности и температуры топлива (ДПТТ);
- блока питания и кроссировки (БПК);
- блока индикаторного (БИ).

Датчик уровня топлива левый предназначен для измерения уровня топлива в топливном баке со стороны левого борта.

Датчик уровня топлива правый предназначен для измерения уровня топлива в топливном баке со стороны правого борта.

Датчик плотности и температуры топлива предназначен для измерения плотности и температуры топлива в топливном баке.


С целью исключения дополнительных погрешностей измерения количества топлива в ходе эксплуатации (топливо в баке при движении колеблется вследствие ускорений, торможений и т.п.) измерительная часть датчиков помещается внутрь топливного бака. Место расположения их максимально приближено к топливным рейкам и расположены они по диагонали, что позволяет рассчитать средний уровень топлива в баке независимо от профиля пути.

Сигналы от датчиков через БПК поступают в БИ, который обеспечивает их обработку и запись во внутреннюю память, а также выводит информацию на дисплей блока индикаторного. Питание комплекса обеспечивается БПК.

Подсистемы выпускаются в следующих модификациях:

- подсистема топливоизмерительная «АВК-ТОР» ЧМЭЗ (для тепловозов ЧМЭЗ в/и);
- подсистема топливоизмерительная «АВК-ТОР» ТЭ10 (для тепловозов ТЭ10 в/и);
- подсистема топливоизмерительная «АВК-ТОР» ТЭМ2 (для тепловозов ТЭМ2, ТЭМ18 в/и);
 - подсистема топливоизмерительная «АВК-ТОР» ТЭ116 (для тепловозов ТЭ116 в/и);
 - подсистема топливоизмерительная «АВК-ТОР» ТЭМ7 (для тепловозов ТЭМ7 в/и);
- подсистема топливоизмерительная «АВК-ТОР» M62 (для тепловозов ДМ62, M62, 2M62, 3M62, 3M62У в/и);

которые отличаются диапазонами измерений, напряжением питания и комплектностью. Общий вид составных элементов подсистем представлен на рисунке 1.

а) — Блок индикаторный (БИ); б) — Блок питания и кроссировки (БПК); в) — Датчик плотности и температуры (ДПТТ); г) — Датчики уровня топлива (ДУТ)

Рисунок 1 – Общий вид составных элементов подсистем

Пломбировка от несанкционированного доступа составных элементов подсистем осуществляется на месте установки в соответствии с таблицей 1. Под головку одного из винтов крепления крышек блоков устанавливается пломбировочная чашка. В чашку заливается мастика, на которой делается оттиск клейма предприятия-изготовителя.

Место нанесения знака поверки представлено на рисунке 2.

Заводские номера, обеспечивающие идентификацию каждого экземпляра средств измерений, наносятся на БИ в виде наклейки и в формуляр типографским способом.

Таблица 1 – Места пломбирования составных элементов подсистем

Наименование	Место пломбирования	Количество пломб
Блок индикаторный	- корпус блока;	1 шт.
	- соединители кабелей БИ и CAN;	1 шт.
	- заглушка USB розетки и гайки гермоввода	1 шт.
Блок питания и	- заглушка разъема «Резерв» и соединители	
кроссировки	кабелей РМ, УТЛ и УТП;	1 шт.
	- соединители кабелей ДМ, МДС и БИ;	1 шт.
	- соединители кабелей ДТВ, ДДТМ и БПК	1 шт.
Датчик уровня	- разъемы кабеля ДПТТ и УТЛ;	1 шт.
топлива левый	- болты крепления датчика	1 шт.
Датчик уровня	- разъем кабеля УТЛ и болт крепления датчика	1 шт.
топлива правый		
Датчик плотности и	- болты крепления датчика	1 шт.
температуры топлива		

Место нанесения знака поверки

Рисунок 2 – Место нанесения знака поверки

Программное обеспечение

Программное обеспечение (далее по тексту — Π O) подсистем осуществляет сбор и обработку данных, зарегистрированных первичными преобразователями, с целью учета, контроля и анализа расхода топлива.

Метрологически значимое ПО записано в блоки ДУТ, ДПТТ и БИ.

Возможности изменения ПО посредством органов управления не предусмотрены.

Конструкция подсистем исключает возможность несанкционированного влияния на ПО и измерительную информацию.

Уровень защиты программного обеспечения «высокий» в соответствии с Р 50.2.0.077-2014.

Влияние встроенного ПО на процесс измерения учтено при нормировании метрологических характеристик подсистем.

Таблица 2 – Идентификационные данные программного обеспечения

Идентификационные	Значение		
данные (признаки)	ДУТ	ДПТТ	БИ
Идентификационное	dut7.bin	DPTT_modbus.hex	avktor.tar.bz2
наименование ПО			
Номер версии	1	2	не ниже 12
(идентификационный			
номер ПО)			
Цифровой	279395B5B298EE1E	53013EC9E56C974D	783F78CC3E24C88D
идентификатор ПО	2F949433753FD990	467F3DDAF625E25C	0957532E64041884
Алгоритм вычисления	MD5	MD5	MD5
идентификатора ПО			

Метрологические и технические характеристики

Таблица 3 – Метрологические характеристики

Наименование характеристики	Значение
Диапазон измерений плотности топлива, кг/м ³	от 800 до 880
Диапазон измерений температуры топлива, °С	от -45 до +70
Диапазон измерений уровня топлива, мм:	
- подсистем «АВК-ТОР» ЧМЭ3	от 35 до 1054
- подсистем «АВК-ТОР» ТЭ10	от 64 до 1008
- подсистем «АВК-ТОР» ТЭМ2	от 67 до 915
- подсистем «АВК-ТОР» ТЭ116	от 58 до 928
- подсистем «АВК-ТОР» ТЭМ7	от 62до 1044
- подсистем «АВК-ТОР» М62 (для 2М62У, 3М62У)	от 67 до 1008
- подсистем «АВК-ТОР» M62 (для ДМ62, M62, 2M62, 3M62)	от 100 до 888
Пределы допускаемой приведенной (к верхнему пределу диапазона	
измерений) погрешности измерений плотности топлива, %	$\pm 0,\!45$
Пределы допускаемой абсолютной погрешности измерений	
температуры топлива, °С	$\pm 1,0$
Пределы допускаемой абсолютной погрешности измерений	
уровня топлива, мм	$\pm 1,0$
Пределы допускаемой относительной погрешности вычисления объема	
и массы топлива, %	$\pm 0,02$

Измерение объема и массы топлива осуществляется в соответствии с методикой измерений, приведенной в приложении Γ руководства по эксплуатации (рег. № ФР.1.29.2021.39922).

Таблица 4 – Основные технические характеристики			
Наименование характеристики	Значение		
Диапазон показаний объема топлива, дм ³ (л):			
- подсистем «АВК-ТОР» ЧМЭ3	от 625 до 6000		
- подсистем «АВК-ТОР» ТЭ10	от 625 до 7300		
- подсистем «АВК-ТОР» ТЭМ2	от 625 до 6350		
- подсистем «АВК-ТОР» ТЭ116	от 625 до 8000		
- подсистем «АВК-ТОР» ТЭМ7	от 625 до 7000		
- подсистем «АВК-ТОР» М62 (для 2М62У, 3М62У)	от 625 до 7300		
- подсистем «АВК-ТОР» М62 (для ДМ62, М62, 2М62, 3М62)	от 625 до 3900		
Диапазон показаний массы топлива, кг:			
- подсистем «АВК-ТОР» ЧМЭ3	от 500 до 5280		
- подсистем «АВК-ТОР» ТЭ10	от 500 до 6420		
- подсистем «АВК-ТОР» ТЭМ2	от 500 до 5580		
- подсистем «АВК-ТОР» ТЭ116	от 500 до 7040		
- подсистем «АВК-ТОР» ТЭМ7	от 500 до 6160		
- подсистем «АВК-ТОР» М62 (для 2М62У, 3М62У)	от 500 до 6420		
- подсистем «АВК-ТОР» M62 (для ДМ62, M62, 2M62, 3M62)	от 500 до 3430		
Напряжение питания от бортовой сети постоянного тока, В:			
- подсистем «АВК-ТОР» ЧМЭ3, «АВК-ТОР» ТЭ116,			
«ABK-TOP» TЭM7	110±20		
- подсистем «АВК-ТОР» ТЭ10, «АВК-ТОР» ТЭМ2,			
«ABK-TOP» M62	75±20		
Потребляемая мощность, Вт, не более	30		
Время непрерывной работы при отсутствии питания			
от бортовой сети, ч, не менее	2		
Габаритные размеры (высота; длина; ширина), мм, не более:			
- БИ	215; 100; 200		
- БПК	295; 80; 220		
- ДПТТ	1220; 125; 80		
- ДУТ	1200; 95; 80		
Общая масса подсистем без упаковки, кг, не более	50		
Условия эксплуатации:			
- температура окружающего воздуха, °С:			
- для БИ и БПК	от -40 до +40		
- для ДПТТ и ДУТ	от -40 до +50		
Средний срок службы, лет	15		
Средняя наработка на отказ, ч	20000		

Знак утверждения типа наносится на БИ в виде наклейки и на титульные листы эксплуатационной документации типографским способом.

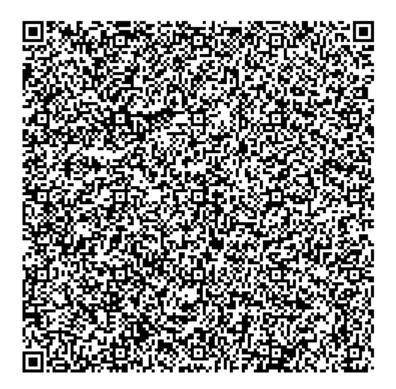
Комплектность средства измерений

Таблица 5 – Комплектность средства измерений

Наименование	Обозначение	Количество			
Узлы					
Блок индикаторный	БИ	1 шт.			
Блок питания и кроссировки	БПК	1 шт.			
Датчик уровня топлива левый	ДУТл	1 шт.			
Датчик уровня топлива правый	ДУТп	1 шт.			
Датчик плотности и температуры топлива	ДПТТ	1 шт.			
Кабели					
блока индикаторного	БИ	1			
блока питания и кроссировки	БПК	1			
датчика уровня топлива левого	УТЛ	1			
датчика уровня топлива правого	УТП	1			
Элементы крепления					
Комплект монтажных частей	_	1 комплект			
Комплект крепежных изделий	_	1 комплект			
Техническая документация					
Формуляр	_	1 экз.			
Руководство по эксплуатации	ВЕТЛ.421459.100 РЭ	1 экз.*			
Методика поверки	ОЦСМ 134196-2021 МП	1 экз.*			
${*}$ — один экземпляр на партию в один адрес.					

Сведения о методиках (методах) измерений

приведены в разделах 1.5 и 2 руководства по эксплуатации. Измерение объема и массы топлива осуществляется в соответствии с методикой измерений, приведенной в приложении Г руководства по эксплуатации (рег. № ФР.1.29.2021.39922).


Нормативные и технические документы, устанавливающие требования к подсистемам топливоизмерительным бортовых комплексов «АВК-ТОР»

Государственная поверочная схема для средств измерений плотности, утвержденная Приказом Росстандарта от 01.11.2019 г. № 2603.

ГОСТ 8.558-2009 ГСИ. Государственная поверочная схема для средств измерений температуры

ГОСТ Р 52931-2008 Приборы контроля и регулирования технологических процессов. Общие технические условия

ВЕТЛ.421459.100 ТУ Бортовой комплекс «АВК-ТОР». Технические условия

