УТВЕРЖДЕНО

приказом Федерального агентства по техническому регулированию и метрологии от «23» июля 2021 г. № 1468

Лист № 1 Всего листов 15

Регистрационный № 82350-21

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматического контроля промышленных выбросов на источниках КАСХ-1,2, КТО-600 ООО «Криогаз - Высоцк»

Назначение средства измерений

Система автоматического контроля промышленных выбросов на источниках КАСХ-1,2, КТО-600 ООО «Криогаз - Высоцк» (далее – АСКПВ или система) предназначена для:

- непрерывных автоматических измерений массовой концентрации загрязняющих веществ: оксида углерода (СО), оксида азота (NO), диоксида азота (NO₂), хлороводород (HCl), диоксида серы (SO₂), твердых взвешенных частиц (пыли) и параметров (температура, давление/разрежение, объемная доля паров воды, объемная доля кислорода, объемный расход) в газовых выбросах;
- расчета и учета массовых и валовых выбросов загрязняющих веществ;
- сбора, обработки, визуализации, хранения полученных данных, представления результатов в различных форматах;
- передачи по запросу накопленной информации на внешний удаленный компьютер (сервер) по проводному каналу связи.

Описание средства измерений

Составными частями системы являются:

- аналитическая часть комплекса термического обезвреживания 600 (далее КТО-600);
- аналитическая часть компрессорного агрегата смешанного хладагента -1 (далее KACX-1);
- $-\,$ аналитическая часть компрессорного агрегата смешанного хладагента $-\,2\,$ (далее KACX-2).

Система выполняет следующие основные функции:

- принудительный отбор пробы дымовых газов;
- очистку пробы от загрязнений и подготовку пробы к анализу в соответствии со спецификацией анализатора;
- транспортировку пробы с помощью подогреваемой линии с автоматическим контролем температуры;
- измерение массовой концентрации определяемых компонентов;
- измерение температуры, давления, скорости потока и массовой концентрации твердых (взвешенных) частиц непосредственно в дымовой трубе;
- приведение результатов измерений к нормальным условиям (0 °C и 101,3 кПа, сухой газ, $O_2 15$ %);
- усреднение результатов измерений за 20 мин;
- расчет массовых и валовых выбросов загрязняющих веществ;
- сбор, хранение и передачу по запросу накопленной информации за отчетный период на внешний удаленный компьютер.

Система является стационарным многоканальным проектно-компонуемым изделием и состоит из технологического и производственного уровня. Производственный уровень является общим.

В технологический уровень аналитической части KACX-1 и аналитической части KACX-2 входят следующие средства измерений:

- газоанализатор X-STREAM (далее X-STREAM), (рег. № 57090-14);
- анализатор кислорода модели «Охутіtter 4000» (далее Охутіtter 4000), (рег. № 13781-10);
- измеритель скорости потока D-FL 100 с электронным блоком D-FL 100-20 (рег. № 66707-17);
- термопреобразователь сопротивления Rosemount 0065 (рег. № 53211-13);
- преобразователь измерительный Rosemount 644 (рег. № 56381-14);
- датчик давления Метран-150 (рег. № 32854-13);
- комплекс измерительно-управляющий и противоаварийной автоматической защиты Delta V (рег. № 49338-13);
- система пробоотбора (зонд для отбора проб газов и обогреваемая линия);

Принцип действия аналитической части KACX-1 и KACX - 2 основан на следующих методах измерений:

- 1) для определения компонентов СО, NO, NO₂ инфракрасная фотометрия;
- 2) для определения компонентов O_2 парамагнитный, электрохимический;
- 3) для определения H_2O расчётный, на основании разницы O_2 в сухой и влажной пробе;
- 4) температуры терморезистивный;
- 5) давления тензорезистивный;
- 6) объёмного расхода дифференциальная разница давлений;

Процесс измерения содержаний веществ заключается в отборе пробы и её первичной подготовке, транспортировке на охладитель и последующему анализу компонентного состава на «холодной» (сухой) основе. Непосредственно на дымоходах КАСХ-1 и КАСХ-2 установлены расходомеры, датчики давления и температуры, измеритель кислорода Охутіtter 4000 и пробоотборные зонды. Проба проходит через пробоотборный зонд по обогреваемой линии, за счёт побудителя расхода, поступает в шкаф на охладитель и на газоанализатор X-STREAM.

Передача измерительной информации от элементов аналитической части KACX-1 и KACX-2 осуществляется следующим образом:

- от измерителя кислорода Oxymitter 4000 в виде унифицированного сигнала постоянного тока от 4 до 20 мА на контроллер;
- от датчиков давления (перепада давления) и температуры отходящих газов в виде унифицированного сигнала постоянного тока от 4 до 20 мА на электронный блок расходомера D-FL 100-20;
- от газоанализатора X-STREAM и расходомера в цифровой форме по протоколу Modbus RTU на контроллер.

В технологический уровень АСКПВ КТО-600 входят следующие средства измерений:

- анализатор газов непрерывного действия СТ5100 (далее СТ5100), (рег. № 72338-18);
- измеритель скорости потока D-FL 100 с электронным блоком D-FL 100-20 (далее расходомер) (рег. № 66707-17);
- анализатор пыли LM 3086 SER (далее пылемер) (рег. № 77149-19);
- термопреобразователь сопротивления Rosemount 0065 (рег. № 53211-13);
- преобразователь измерительный Rosemount 644 (рег. № 56381-14);
- датчик давления Метран-150 (рег. № 32854-13);
- преобразователи WAGO I/O-SYSTEM серии 750, 753 (далее преобразователь WAGO) (рег.№ 41134-09);
- комплекс измерительно-управляющий и противоаварийной автоматической защиты Delta V (далее – контроллер) (рег. № 49338-13);
- система пробоотбора (зонд для отбора проб газов и обогреваемая линия);

Принцип действия аналитической части КТО-600 основан на следующих методах измерений:

- 1) для определения компонентов CO, NO, NO₂, SO₂, HCl, O₂, H₂O инфракрасная спектросопия;
- 2) температуры терморезистивный;
- 3) давления тензорезистивный;
- 4) объёмного расхода дифференциальная разница давлений;
- 5) измерение твердых взвешенных частиц (пыли) оптико-абсорбционный.

Процесс измерения содержаний веществ заключается в отборе проб и её первичной подготовке, транспортировке на блок вторичной подготовки и последующему анализу компонентного состава на «горячей» (влажной) основе. Предусмотрено по одному пробозаборному устройству на каждый из двух дымоходов. Непосредственно на дымоходах установлены расходомеры, датчики давления и температуры, пылемеры и пробоотборные зонды. Проба проходит через пробоотборный зонд по обогреваемой линии транспортировки пробы, поступает в шкаф на блок вторичной подготовки пробы с возможностью переключения потоков от дымоходов на газоанализатор СТ5100.

Передача измерительной информации от элементов аналитической части КТО-600 осуществляется следующим образом:

- от газоанализатора СТ5100, пылемера, датчиков давления и температуры в виде унифицированного сигнала постоянного тока от 4 до 20 мА на преобразователь WAGO;
- от датчиков давления (перепада давления) и температуры в виде унифицированного сигнала постоянного тока от 4 до 20 мА на электронный блок расходомера D-FL 100-20;
- от расходомера и преобразователя WAGO в цифровой форме по протоколу Modbus RTU на контроллер.

Место пломбирования отсутствует. Ограничение доступа осуществляется с помощью механических замков.

Знак поверки наносится в паспорт на средство измерений.

Общий вид оборудования системы представлены на рисунках 1 -12.

Рисунок — 1 Общий вид внутри шкафа аналитической части KACX-1 и KACX -2

Рисунок – 2 Общий вид внутри шкафа аналитической части КТО-600:

Рисунок 3 – Общий вид газоанализатора СТ5100

Рисунок 4 – Общий вид газоанализатора X-STREAM

Рисунок 5 – Общий вид анализатора кислорода модели «Oxymitter 4000»

Рисунок 6 — Общий вид измерителя скорости потока D-FL 100 с электронным блоком D-FL 100-20

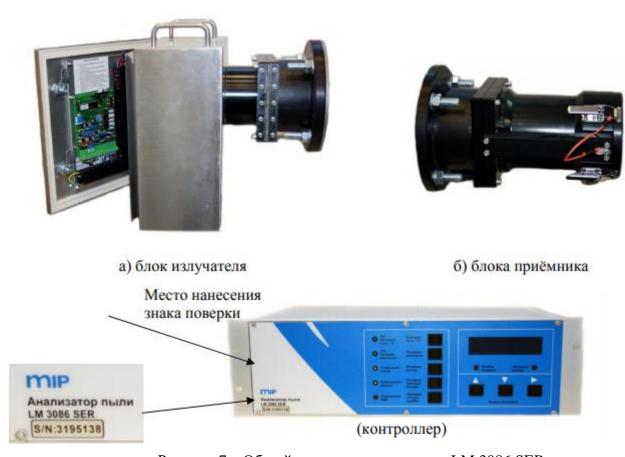


Рисунок 7 – Общий вид анализатора пыли LM 3086 SER

Рисунок 8 – Общий вид термопреобразователя сопротивления Rosemount 0065

Рисунок 9 — Общий вид преобразователя измерительного Rosemount 644

Рисунок 10 – Общий вид датчика давления Метран-150

Рисунок 11 – Общий вид преобразователя WAGO I/O-SYSTEM серии 750, 753

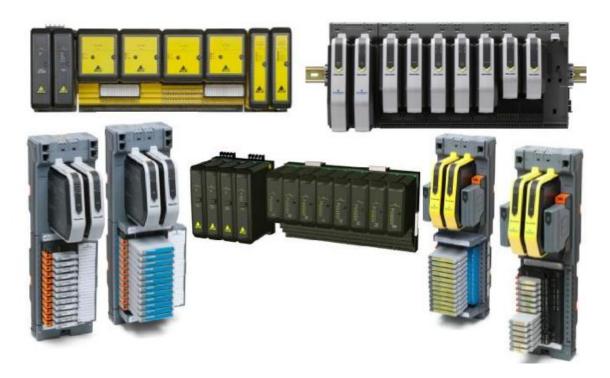


Рисунок 12 — Общий вид комплекса измерительно-управляющего и противоаварийной автоматической защиты Delta V

Программное обеспечение

Программное обеспечение (ПО) систем состоит из двух уровней:

- уровень встроенного ПО технических средств системы (анализатора, расходомера, пылемера);
- уровень прикладного ПО «ASKPV» нижнего уровня Delta V.

Встроенное ПО технических средств системы специально разработано изготовителями соответствующих технических средств и обеспечивает передачу измерительной информации в контроллер системы.

Прикладное ПО «ASKPV» нижнего уровня Delta V производит:

- прием и обработку цифровых сигналов от газоанализаторов, расходомеров, пылемеров и преобразователя WAGO;
- расчет массовых и валовых выбросов загрязняющих веществ в атмосферу;

Прикладное ПО «ASKPV» нижнего уровня Delta V, обеспечивающие расчет выбросов являются метрологически значимыми. Влияние прикладного ПО «ASKPV» нижнего уровня Delta V учтено при нормировании метрологических характеристик измерительных каналов системы. Уровень защиты — «средний» по Р 50.2.077-2014.

Идентификационные данные элементов встроенного прикладного ПО контроллера Delta V приведены в таблице 1.

Таблица 1 - Идентификационные данные ПО

Идентификационные данные (признаки)		
Идентификационное наименование ПО Контрольная сумма ¹⁾		
ASKPV_KASX_SI_1	C986A094	
ASKPV_KASX_SI_2	BA811ADF	
ASKPV_SI	76E85514	
1) Алгоритм расчёта контрольной суммы – CRC32		

Метрологические и технические характеристики

Таблица 2 — Метрологические характеристики газоаналитических каналов аналитической части KACX - 1 и KACX - 2 (с устройством отбора и подготовки пробы)

Измери- тельный Диапазон показа- ний массовой		Диапазон измерений	Пределы допускаемой погрешности в условиях эксплуатации ²⁾ , %	
канал (определя- емый ком- понент)	концентрации (объемной доли), $M\Gamma/M^3$ (%)	массовой концентрации (объемной доли), мг/м ³ (%)	приведенной ¹⁾	относительной
СО	от 0 до 1200	от 0 до 120 включ. св. 120 до 1200	±20 -	- ±20
NO	от 0 до 650	от 0 до 80 включ. св. 80 до 650	±25 -	- ±25
NO ₂	от 0 до 1000	от 0 до 100 включ. св. 100 до 1000	±20 -	- ±20
O_2	от 0 до 25 % (об.)	от 0 до 5 (об.) включ. св. 5 до 25 % (об.)	±15 _	- ±15
Пары Н2О	от 0 до 25 % (об.)	от 0 до 5 % (об.) включ. св. 5 до 25 % (об.)	±25 -	- ±25

¹⁾ Приведенные к верхнему пределу диапазона измерений;

²⁾ В соответствии с Постановлением Правительства РФ от 16.11.2020 г. № 1847, п. 3.1.3;

 $^{^{3)}}$ Номинальная цена единицы наименьшего разряда измерительных каналов -1; 0,1 мг/м 3 (% об.).

Таблица 3 – Метрологические характеристики газоаналитических каналов аналитической части

КТО-600 (с устройством отбора и подготовки пробы)

Измери- тельный канал	Диапазон показа- ний массовой	Диапазон измерений массовой концентрации		саемой погрешно- оксплуатации ² , %
(определя- емый ком- понент)	концентрации (объемной доли), мг/м ³ (%)	(объемной доли), мг/м ³ (%)	приведенной ¹⁾	относительной
СО	от 0 до 300	от 0 до 60 включ. св. 60 до 300	±20 -	±20
NO	от 0 до 300	от 0 до 60 включ. св. 60 до 300	±25 -	±25
NO ₂	от 0 до 300	от 0 до 60 включ. св. 60 до 300	±25 -	- ±25
SO_2	от 0 до 600	от 0 до 80 включ. св. 80 до 600	±25 -	- ±25
HCl	от 0 до 150	от 0 до 30 включ. св. 30 до 150	±25 -	±25
O_2	от 0 до 15 % (об.)	от 0 до 5 % (об.) св. 5 до 15 % (об.)	±15 -	_ ±15
Пары Н2О	от 0 до 20 % (об.)	от 0 до 4% (об.) св.4 до 20 % (об.)	±25 -	- ±25

¹⁾ Приведенные к верхнему пределу диапазона измерений;

Таблица 4 — Метрологические характеристики измерительного канала твердых (взвешенных) частиц аналитической части КТО-600

Измерительный канал (определяемый компонент или параметр)	Диапазон показаний	Диапазон изме- рений ³⁾	Пределы допускаемой отно- сительной погрешности, %
Массовая концентрация твердых (взвешенных) частиц, мг/м ³	от 0 до 10000	от 10 до 40001)	±20 ²⁾
Спектральный коэффициент направленного пропускания, %	от 0 до 100	от 5 до 95	±5

¹⁾ Для оптической длины пути 1м;

²⁾ В соответствии с Постановлением Правительства РФ от 16.11.2020 г. № 1847, п. 3.1.3;

 $^{^{3)}}$ Номинальная цена единицы наименьшего разряда измерительных каналов -1; 0,1 мг/м 3 (% об.).

²⁾ После проведения градуировки на анализируемой среде;

 $^{^{3)}}$ Номинальная цена единицы наименьшего разряда измерительного канала твердых (взвешенных) частиц (веществ) составляет 0,1 мг/м 3 .

Таблица 5 – Метрологические характеристики измерительных каналов системы

Наименование характеристики	Значение
Предел допускаемой вариации показаний, в долях от предела допускаемой погрешности	0,3
Пределы допускаемого изменения выходного сигнала за 24 ч непрерывной работы, в долях от пределов допускаемой погрешности	±0,3
Время прогрева, мин, не более	60
Предел допускаемого времени установления выходного сигнала $(T_{0,9})$, с (время одного цикла без учета транспортного запаздывания)	120

Таблица 6 – Метрологические характеристики для измерительных каналов параметров газового потока в условиях эксплуатации

Измерительный канал	Единицы измерений	Диапазон измерений ³⁾	Пределы допускае- мой погрешности
Температура дымовых газов	°C	от 0 до +400	±0,5 (абс.)
Абсолютное давление дымо- вых газов	кПа	от 0 до 160	±0,25 % (прив.) ²⁾
Скорость газового потока ¹⁾	м/с	от 3 до 40	±0,4 (абс.)

¹⁾ Диапазон измерений по каналу объемного расхода рассчитывается с учетом измеренного значения скорости газового потока и площади сечения дымовой трубы;

Таблица 7 – Основные технические характеристики газоаналитического оборудования аналитической части KACX – 1 и KACX – 2

Наименование характеристики	Значение
Напряжение питания от сети переменного тока частотой (50-60) Гц, В	170±70
Габаритные размеры шкафа аналитического, мм, не более:	
Ширина	1090
Высота	2100
Глубина	960
Средняя наработка на отказ в условиях эксплуатации, с учетом технического обслуживания, ч (при доверительной вероятности P=0,95)	24000
Средний срок службы, лет	10
Условия эксплуатации (внутри аналитического шкафа): диапазон температуры, °С относительная влажность (без конденсации влаги), %, не более диапазон атмосферного давления, кПа	от 10 до 30 95 от 84 до 106,7
Параметры анализируемого газа на входе в пробоотборный зонд:	
-температура, °С, не более	+400

²⁾ Приведенные к верхнему пределу диапазона измерений;

³⁾ Номинальная цена единицы наименьшего разряда измерительных каналов: температуры 0.1 °C, давления 0.1 кПа, скорость 0.1 м/с, пыли 0.1 мг/м³.

Таблица 8 – Основные технические характеристики газоаналитического оборудования аналитической части KTO-600

Наименование характеристики	Значение
Напряжение питания от сети переменного тока частотой (50±1) Гц, В	380±38
Габаритные размеры шкафа аналитического, мм, не более: Ширина Высота Глубина	2200 2100 1000
Средняя наработка на отказ в условиях эксплуатации, с учетом технического обслуживания, ч (при доверительной вероятности P=0,95)	24000
Средний срок службы, лет	10
Условия эксплуатации (внутри шкафа): диапазон температуры, °C относительная влажность (без конденсации влаги), %, не более диапазон атмосферного давления, кПа	от 5 до 30 95 от 84 до 106,7
Параметры анализируемого газа на входе в пробоотборный зонд:	
-температура, °С, не более	+180

Знак утверждения типа

наносится на титульный лист Руководства по эксплуатации типографским методом.

Комплектность средства измерений

Таблица 9 – Комплектность системы

I аблица 9 — Комплектность системы		
Наименование	Обозначение	Количество
Система автоматического контроля промышленных выбросов на источниках КАСХ-1,2, КТО-600 ООО «Криогаз - Высоцк», в составе:	Зав. № 1	1 шт.
Анализатор газа непрерывного действия CT5100	CT5100	1 комплект
Газоанализатор X-STREAM	X-STREAM	2 комплекта
Анализатор кислорода модели «Oxymitter 4000»	Oxymitter 4000	2 комплекта
Термопреобразователи сопротивления Rosemount 0065	Rosemount 0065	4 комплекта
Преобразователь измерительный Rosemount 644	Rosemount 644	4 комплекта
Измеритель скорости потока D-FL 100 с электронным блоком D-FL 100-20	D-FL 100-20	4 комплекта
Датчик давления Метран – 150 TAR	Метран – 150 TAR	4 комплекта
Анализатор пыли LM 3086 SER	LM 3086 SER	2 комплекта
Преобразователь WAGO I/O-SYSTEM серии 750, 753	WAGO I/O-SYSTEM	10 комплек- тов
Комплекс измерительно-управляющий и противоаварийной автоматической защиты Delta V	Delta V	1 комплект
Шкаф приборный аналитической части КАСХ	-	2 шт.

Наименование	Обозначение	Количество
Шкаф приборный аналитической части КТО	-	1 шт.
Шкаф контроллерный	-	1 шт.
Документация:		
Система автоматического контроля промыш-	РЭ	1 экз.
ленных выбросов на источниках КАСХ-1,2,		
КТО-600 ООО «Криогаз - Высоцк». Руковод-		
ство по эксплуатации.		
Интегрированная система управления и без-	ОПО	1 экз.
опасности (ИСУБ). Описание прикладного		
программного обеспечения «ASKPV».		
Интегрированная система управления и без-	РΠ	1 экз.
опасности (ИСУБ). Руководство пользователя		
для программного обеспечения «ASKPV».		
Методика поверки	МП-242-2416-2021	1 экз.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе «Система автоматического контроля промышленных выбросов на источниках КАСХ-1,2, КТО-600 ООО «Криогаз - Высоцк». Руководство по эксплуатации», пункт 1.4.

Нормативные и технические документы, устанавливающие требования к системе автоматического контроля промышленных выбросов на источниках КАСХ-1,2, КТО-600 ООО «Криогаз - Высоцк»

Постановление Правительства РФ от 16.11.2020 № 1847 «Об утверждении перечня измерений, относящихся к сфере государственного регулирования обеспечения единства измерений», п. 3.1.3

ГОСТ Р 50759-95 «Анализаторы газов для контроля промышленных и транспортных выбросов. Общие технические условия»

ГОСТ Р 52931-2008 «Приборы контроля и регулирования технологических процессов. Общие технические условия»

Приказ Росстандарта от 31.12.2020 № 2315 «Об утверждении Государственной поверочной схемы для средств измерений содержания компонентов в газовых и газоконденсатных средах»

ГОСТ 8.558-2009 «ГСИ. Государственная поверочная схема для средств измерений температуры»

Приказ Росстандарта от 06.12.2019 № 2900 «Об утверждении Государственной поверочной схемы для средств измерений абсолютного давления в диапазоне $1\cdot10^{-1}$ - $1\cdot10^7$ Па»

ГОСТ 8.606-2012 «ГСИ. Государственная поверочная схема для средств измерений дисперсных параметров аэрозолей, взвесей и порошкообразных материалов»

Приказ Росстандарта от 25.11.2019 № 2815 «Об утверждении Государственной поверочной схемы для средств измерений скорости воздушного потока»

ГОСТ Р 8.960-2019 «ГСИ. Наилучшие доступные технологии. Метрологическое обеспечение автоматических измерительных систем для контроля вредных промышленных выбросов. Основные положения»

ГОСТ Р 8.958-2019 «ГСИ. Наилучшие доступные технологии. Автоматические измерительные системы для контроля вредных промышленных выбросов. Методы и средства испытаний»

ГОСТ Р 8.959–2019 «ГСИ. Наилучшие доступные технологии. Автоматические измерительные системы для контроля вредных промышленных выбросов. Методика поверки»

Техническая документация изготовителя

