УТВЕРЖДЕНО

приказом Федерального агентства по техническому регулированию и метрологии

от «13» августа 2021 г. № 1790

Регистрационный № 82682-21

Лист № 1 Всего листов 8

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электрической энергии (АИИС КУЭ) ООО «Юг Руси – Золотая семечка»

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электрической энергии (АИИС КУЭ) ООО «Юг Руси — Золотая семечка» предназначена для измерений активной и реактивной электрической энергии и мощности, потребленной (переданной) за установленные интервалы времени отдельными технологическими объектами, сбора, обработки, хранения, формирования отчетных документов и передачи полученной информации заинтересованным организациям в рамках согласованного регламента.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, двухуровневую автоматизированную систему с централизованным управлением и распределенной функцией измерений.

АИИС КУЭ включает в себя следующие уровни:

1-й уровень – измерительно-информационные комплексы (ИИК), включающие в себя измерительные трансформаторы тока (ТТ), трансформаторы напряжения (ТН) и многофункциональные счетчики активной и реактивной электрической энергии и мощности (счетчики), вторичные измерительные цепи и технические средства приема-передачи данных.

2-й уровень – информационно-вычислительный комплекс (ИВК), включающий в себя сервер АИИС КУЭ, устройство синхронизации системного времени (УССВ) на базе ГЛОНАСС-приемника типа УСВ-3, каналообразующую аппаратуру, технические средства для организации локальной вычислительной сети и разграничения прав доступа к информации, автоматизированные рабочие места персонала (АРМ) и программное обеспечение (ПО) «АльфаЦЕНТР».

Первичные фазные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются усредненные значения активной мощности и среднеквадратические значения напряжения и тока. По вычисленным среднеквадратическим значениям тока и напряжения производится вычисление полной мощности за период. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мощности.

Электрическая энергия, как интеграл по времени от средней за период мощности, вычисляется для интервалов времени 30 мин.

Цифровой сигнал с выходов счетчиков при помощи технических средств приемапередачи данных поступает на сервер АИИС КУЭ, где осуществляется дальнейшая обработка измерительной информации, в частности вычисление электрической энергии и мощности с учетом коэффициентов трансформации ТТ и ТН, хранение и накопление измерительной информации, оформление отчетных документов, отображение информации на мониторах АРМ При этом, если вычисление электрической энергии и мощности с учетом коэффициентов трансформации ТТ и ТН осуществляется в счетчиках, на втором уровне данное вычисление осуществляется умножением на коэффициент равный единице. Также сервер АИИС КУЭ имеет возможность получать измерительную информацию в виде xml-файлов установленных форматов от ИВК прочих АИИС КУЭ, зарегистрированных в Федеральном информационном фонде, и передавать всем заинтересованным субъектам оптового рынка электрической энергии и мощности (ОРЭМ).

Передача информации от сервера или APM коммерческому оператору с электронной цифровой подписью субъекта OPЭM, системному оператору и в другие смежные субъекты OPЭM осуществляется по каналу связи с протоколом TCP/IP сети Internet в виде xml-файлов установленных форматов в соответствии с приложением 11.1.1 к Положению о порядке получения статуса субъекта оптового рынка и ведения реестра субъектов оптового рынка электрической энергии и мощности.

АИИС КУЭ имеет систему обеспечения единого времени (СОЕВ). СОЕВ предусматривает поддержание шкалы всемирного координированного времени на всех уровнях системы (ИИК и ИВК). АИИС КУЭ оснащена УССВ, синхронизирующим собственную шкалу времени со шкалой всемирного координированного времени Российской Федерации UTC(SU) по сигналам глобальной навигационной системы ГЛОНАСС, получаемых от ГЛОНАССприемника.

Сравнение шкалы времени сервера АИИС КУЭ со шкалой времени УССВ осуществляется во время сеанса связи с УССВ. При наличии расхождения ± 1 с и более сервер АИИС КУЭ производит синхронизацию собственной шкалы времени со шкалой времени УССВ.

Сравнение шкалы времени счетчиков со шкалой времени сервера АИИС КУЭ осуществляется во время сеанса связи со счетчиками. При любом расхождении шкалы времени счетчика от шкалы времени сервера АИИС КУЭ производится синхронизация шкалы времени счетчика.

Факты синхронизации времени с обязательной фиксацией времени (дата, часы, минуты, секунды) до и после синхронизации или величины синхронизации времени, на которую были скорректированы указанные устройства, отражаются в журналах событий счетчика и сервера АИИС КУЭ.

Нанесение знака поверки на средство измерений не предусмотрено. Заводской номер указывается в формуляре на систему автоматизированную информационно-измерительную коммерческого учета электрической энергии (АИИС КУЭ) ООО «Юг Руси – Золотая семечка».

Программное обеспечение

В АИИС КУЭ используется ПО «АльфаЦЕНТР». Уровень защиты ПО от непреднамеренных и преднамеренных изменений предусматривает ведение журналов фиксации ошибок, фиксации изменений параметров, защиты прав пользователей и входа с помощью пароля, защиты передачи данных с помощью контрольных сумм, что соответствует уровню – «средний» в соответствии с Р 50.2.077-2014. Метрологически значимая часть ПО приведена в таблице 1.

Таблица 1 – Идентификационные данные ПО

Идентификационные данные (признаки)	Значение		
Идентификационное наименование ПО	«АльфаЦЕНТР»		
Номер версии (идентификационный номер) ПО	не ниже 12.1		
Наименование программного модуля ПО	ac_metrology.dll		
Цифровой идентификатор ПО	3E736B7F380863F44CC8E6F7BD211C54		
Алгоритм вычисления цифрового идентификатора	MD5		

Метрологические и технические характеристики

Состав измерительных каналов (ИК) АИИС КУЭ и их основные метрологические характеристики приведены в таблицах 2 – 4.

Таблица 2 – Состав ИК АИИС КУЭ

	лица 2 – Состав ик Айис Ку Э					
Номер ИК	Наименование ИК	TT	ТН	Счетчик	УССВ/Сервер	Вид электрической энергии и мощности
1	2	3	4	5	6	7
1	ПС 110 кВ Р31, ЗРУ 6кВ, ЗСШ 6кВ, яч. 31-31, КЛ-6кВ ф. 31-31	ТЛМ-10 600/5 Кл. т. 0,5 Рег. № 2473-00	НАМИ-10-95 УХЛ2 6000/100 Кл. т. 0,5 Рег. № 20186-00	СЭТ-4ТМ.03 Кл. т. 0,5S/1,0 Рег. № 27524-04		активная реактивная
2	ПС 110 кВ Р31, ЗРУ 6кВ, 2СШ 6кВ, яч. 31-18, КЛ-6кВ ф. 31-18	ТЛМ-10 600/5 Кл. т. 0,5 Рег. № 2473-05	НАМИ-10-95 УХЛ2 6000/100 Кл. т. 0,5 Рег. № 20186-00	СЭТ-4ТМ.03 Кл. т. 0,5S/1,0 Рег. № 27524-04	УССВ: УСВ-3 Рег. № 64242-16 Сервер АИИС КУЭ: НРЕ ProLiant DL20	активная реактивная
3	ПС 110 кВ Р16, ЗРУ 6кВ, ЗСШ 6кВ, яч. 16-31, КЛ-6кВ ф. 16-31	ТЛК10-5,6 1000/5 Кл. т. 0,5 Рег. № 9143-01	НАМИТ-10 6000/100	СЭТ-4ТМ.03 Кл. т. 0,5S/1,0 Рег. № 27524-04		активная реактивная
4	ПС 110 кВ Р16, ЗРУ 6кВ, ЗСШ 6кВ, яч. 16-30, КЛ-6кВ ф. 16-30	ТЛК10-5,6 1000/5 Кл. т. 0,5 Рег. № 9143-01	Кл. т. 0,5 Рег. № 16687-13	СЭТ-4ТМ.03 Кл. т. 0,5S/1,0 Рег. № 27524-04	Gen10	активная реактивная
5	ПС 110 кВ Р16, ЗРУ 6кВ, 4СШ 6кВ, яч. 16-42, КЛ-6кВ ф. 16-42	ТЛК10-5,6 1000/5 Кл. т. 0,5 Рег. № 9143-01	НАМИТ-10 6000/100 Кл. т. 0,5 Рег. № 16687-13	СЭТ-4ТМ.03 Кл. т. 0,5S/1,0 Рег. № 27524-04		активная реактивная

Продолжение таблицы 2

1	2	3	4	5	6	7
6	ПС 110 кВ Р16, ЗРУ 6кВ, 4СШ 6кВ, яч. 16-41, КЛ-6кВ ф. 16-41	ТЛК10-5,6 1000/5 Кл. т. 0,5 Рег. № 9143-01	НАМИТ-10 6000/100 Кл. т. 0,5 Рег. № 16687-13	СЭТ-4ТМ.03 Кл. т. 0,5S/1,0 Рег. № 27524-04	УССВ: УСВ-3 Рег. № 64242-16 Сервер АИИС КУЭ: HPE ProLiant DL20 Gen10	активная реактивная

Примечания

- 1. Допускается замена ТТ, ТН и счетчиков на аналогичные, утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в таблице 2, при условии, что собственник АИИС КУЭ не претендует на улучшение указанных в таблицах 3 и 4 метрологических характеристик.
 - 2. Допускается замена УССВ на аналогичные утвержденного типа.
 - 3. Допускается замена сервера АИИС КУЭ без изменения, используемого ПО (при условии сохранения цифрового идентификатора ПО).
 - 4. Допускается изменение наименований ИК, без изменения объекта измерений.
- 5. Указанные замены оформляется актом в установленном собственником АИИС КУЭ порядке. Акт хранится совместно с эксплуатационными документами на АИИС КУЭ как их неотъемлемая часть, до срока наступления очередной поверки АИИС КУЭ.
- 6. На момент наступления очередной поверки изменения в АИИС КУЭ, отраженные в актах, вносятся в описание типа в порядке, установленном действующим законодательством РФ.

Таблица 3 – Метрологические характеристики ИК АИИС КУЭ (активная энергия и мощность)

	1 1			(
		Метрологические характеристики ИК					
	Диапазон тока	Границы основной			Границы относительной		
		относительной			погрешности измерений		
Номер ИК		погрешности			в рабочих условиях		
1	измерений, $(\pm \delta)$, %		эксплуатации, $(\pm \delta)$, %				
		cos φ =	cos φ=	cos φ =	cos φ =	cos φ=	cos φ =
		1,0	0,8	0,5	1,0	0,8	0,5
1 - 6	$I_{1\text{hom}} \le I_1 \le 1,2I_{1\text{hom}}$	1,0	1,4	2,3	1,7	2,2	2,9
(TT 0,5; TH 0,5;	$0.2I_{1_{\text{HOM}}} \le I_1 < I_{1_{\text{HOM}}}$	1,2	1,7	3,0	1,8	2,4	3,5
Счетчик 0,5S)	$0.05I_{1_{\text{HOM}}} \le I_1 < 0.2I_{1_{\text{HOM}}}$	1,8	2,9	5,4	2,3	3,4	5,7

Примечания

- 1 Характеристики погрешности ИК даны для измерений электрической энергии и средней мощности (получасовой).
- 2 Погрешность в рабочих условиях указана для $\cos \varphi = 1.0$; 0,8; 0,5 инд. и температуры окружающего воздуха в месте расположения счетчиков электрической энергии от 0 до плюс 40 °C.
- $3~{\rm B}$ качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности P=0.95.

Таблица 4 — Метрологические характеристики ИК АИИС КУЭ (реактивная энергия и мощность)

		Метрологические характеристики ИК				
Номер ИК	Диапазон тока	Границы относительной основной погрешности измерений, $(\pm \delta)$, %		погрешност в рабочих	носительной и измерений условиях ии, $(\pm \delta)$, %	
		$\cos \varphi = 0.8$	$\cos \varphi = 0.5$	$\cos \varphi = 0.8$	` /	
1 - 6	$I_{1\text{hom}} \le I_1 \le 1,2I_{1\text{hom}}$	2,1	1,5	2,7	2,3	
(ТТ 0,5; ТН 0,5; Счетчик 1,0)	$0.2I_{\text{1hom}} \le I_1 < I_{\text{1hom}}$	2,6	1,8	3,2	2,5	
	$0.05I_{1_{\text{HOM}}} \le I_1 < 0.2I_{1_{\text{HOM}}}$	4,6	2,8	5,4	3,7	

Примечания

- 1 Характеристики погрешности ИК даны для измерений электрической энергии и средней мощности (получасовой).
- 2 Погрешность в рабочих условиях указана для $\cos \varphi = 0.8$; 0,5 инд. и температуры окружающего воздуха в месте расположения счетчиков электрической энергии от 0 до плюс 40 °C.
- 3 В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности P=0.95.

Основные технические характеристики ИК АИИС КУЭ приведены в таблице 5.

Таблица 5 – Основные технические характеристики ИК АИИС КУЭ

Таолица 5 – Основные технические характеристики ИК АИИС КУЭ	
Наименование характеристики	Значение
Количество измерительных каналов	6
Нормальные условия:	
параметры сети:	
- напряжение, $\%$ от $U_{\text{ном}}$	от 99 до 101
- Tok, $\%$ ot I_{hom}	от 5 до 120
- частота, Гц	от 49,85 до 50,15
- коэффициент мощности cos ф	от 0,5 инд. до 0,8 емк.
температура окружающей среды, °С	от +21 до +25
Условия эксплуатации:	
параметры сети:	
- напряжение, $\%$ от $U_{\text{ном}}$	от 90 до 110
- Tok, $\%$ ot I_{hom}	от 5 до 120
- частота, Гц	от 49,5 до 50,5
- коэффициент мощности cosф	от 0,5 инд. до 0,8 емк.
температура окружающей среды для ТТ и ТН, °С	от -45 до +40
температура окружающей среды в месте расположения счетчиков, °С	от 0 до +40
магнитная индукция внешнего происхождения, мТл, не более	0,5
Надежность применяемых в АИИС КУЭ компонентов:	
Счетчики:	
- среднее время наработки на отказ, ч, не менее	90000
- среднее время восстановления работоспособности, сут, не более Сервер АИИС КУЭ:	3
- среднее время наработки на отказ, ч, не менее	70000
- среднее время восстановления работоспособности, ч, не более	1
yccb:	
- среднее время наработки на отказ, ч, не менее	45000
- среднее время восстановления работоспособности, ч, не более	2
Глубина хранения информации	
Счетчики:	
- тридцатиминутный профиль нагрузки в двух направлениях, сут,	
не менее	113
- при отключении питания, лет, не менее	10
Сервер АИИС КУЭ:	
- хранение результатов измерений и информации о состоянии	
средств измерений, лет, не менее	3,5
Пределы допускаемой погрешности СОЕВ, с	±5

Надежность системных решений:

- защита от кратковременных сбоев питания сервера с помощью источника бесперебойного питания.

В журналах событий фиксируются факты:

- журнал счетчика:
 - параметрирования;
 - пропадания напряжения (в т. ч. и пофазного);
 - коррекции времени в счетчике;
- журнал сервера:
 - параметрирования;
 - пропадания напряжения;

- коррекции времени в счетчиках и сервере;
- пропадание и восстановление связи со счетчиком.

Защищенность применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
 - счетчика;
 - промежуточных клеммников вторичных цепей тока и напряжения;
 - испытательной коробки;
 - сервера (серверного шкафа);
- защита на программном уровне информации при хранении, передаче, параметрировании:
 - счетчика;
 - сервера.

Возможность коррекции времени:

- в счетчиках (функция автоматизирована);
- в сервере (функция автоматизирована).

Возможность сбора информации:

- о результатах измерений (функция автоматизирована);
- о состоянии средств измерений (функция автоматизирована).

Знак утверждения типа

наносится на титульные листы эксплуатационной документации на систему автоматизированную информационно-измерительную коммерческого учета электрической энергии (АИИС КУЭ) ООО «Юг Руси – Золотая семечка».

Комплектность средства измерений

В комплект поставки входит техническая документация на АИИС КУЭ и на комплектующие средства измерений.

Комплектность АИИС КУЭ представлена в таблице 6.

Таблица 6 – Комплектность АИИС КУЭ

Наименование	Обозначение	Количество, шт.
Трансформатор тока	ТЛМ-10	4
Трансформатор тока	ТЛК10-5,6	8
Трансформатор напряжения	НАМИ-10-95 УХЛ2	2
Трансформатор напряжения	НАМИТ-10	2
Счетчик электрической энергии	СЭТ-4ТМ.03	6
многофункциональный	C31-41M.03	U
Устройство синхронизации системного времени	УСВ-3	1
Сервер АИИС КУЭ	HPE ProLiant DL20 Gen10	1
Программное обеспечение	«АльфаЦЕНТР»	1
Методика поверки	МИ 3000-2018	1
Формуляр	АСВЭ 309.00.000 ФО	1

Сведения о методиках (методах) измерений

приведены в документе «Методика измерений количества электрической энергии (мощности) с использованием системы автоматизированной информационно-измерительной коммерческого учета электрической энергии ООО «Юг Руси — Золотая семечка» (АИИС КУЭ ООО «Юг Руси — Золотая семечка»)», аттестованной ООО «АСЭ», аттестат аккредитации № RA.RU.312617 от 17.01.2019 г.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электрической энергии (АИИС КУЭ) ООО «Юг Руси – Золотая семечка»

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия.

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения.

Изготовитель

Общество с ограниченной ответственностью «КЭС» (ООО «КЭС)

Адрес юридического лица: 350000, Краснодарский край, г. Краснодар, ул. Гимназическая, д. 55/1

ИНН: 2308138781

Испытательный центр

Общество с ограниченной ответственностью «Автоматизированные системы в энергетике»

Место нахождения: г. Владимир, ул. Тракторная, д. 7А

Адрес юридического лица: г. Владимир, ул. Юбилейная, д. 15

Регистрационный номер в реестре аккредитованных лиц: RA.RU.312617

