# **УТВЕРЖДЕНО**

приказом Федерального агентства по техническому регулированию и метрологии от «7» декабря 2021 г. № 2750

Лист № 1 Всего листов 7

Регистрационный № 83956-21

# ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии ООО «Газпром энерго» ООО «Газпром трансгаз Волгоград» Фроловское ЛПУ МГ КС «Фролово»

# Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии ООО «Газпром энерго» ООО «Газпром трансгаз Волгоград» Фроловское ЛПУ МГ КС «Фролово» (далее – АИИС КУЭ) предназначена для измерений приращений активной и реактивной электрической энергии, потребленной и переданной за установленные интервалы времени, сбора, обработки, хранения и передачи полученной информации.

# Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, двухуровневую систему с централизованным управлением и распределенной функцией измерений.

АИИС КУЭ состоит из двух уровней:

- 1-й уровень измерительно-информационные комплексы (ИИК), включающие в себя измерительные трансформаторы напряжения (ТН), измерительные трансформаторы тока (ТТ), многофункциональные счетчики активной и реактивной электрической энергии (далее счетчики), вторичные измерительные цепи и технические средства приема-передачи данных;
- 2-й уровень информационно-вычислительный комплекс (ИВК), выполненный на основе серверного оборудования промышленного исполнения. ИВК включает в себя специализированное программное обеспечения «АльфаЦЕНТР», каналообразующую аппаратуру, серверы баз данных (БД) и автоматизированные рабочие места (АРМ) ООО «Газпром энерго» и АО «Газпром энергосбыт».

ИИК, ИВК, технические средства приема-передачи данных и линии связи образуют измерительные каналы (ИК).

Первичные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям измерительных цепей поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной, реактивной и полной мощности, которые усредняются за период 0,02 с. Измерительная информация на выходе счетчика без учета коэффициента трансформации:

- активная и реактивная электрическая энергия, как интеграл по времени от средней за период 0.02 с активной и реактивной мощности, соответственно, вычисляемая для интервалов времени 30 минут;
- средняя на интервале времени 30 минут активная и реактивная электрическая мощность.

ИВК обеспечивает выполнение следующих функций:

- периодический (один раз в сутки) и по запросу автоматический сбор результатов измерений электрической энергии;
- автоматический сбор данных о состоянии средств измерений и состоянии объектов измерений;
  - хранение не менее 3,5 лет результатов измерений и журналов событий;
- автоматический сбор результатов измерений после восстановления работы каналов связи, восстановления питания;
- перемножение результатов измерений, хранящихся в базе данных, на коэффициенты трансформации TT и TH;
  - формирование отчетных документов;
- ведение журнала событий с фиксацией изменений результатов измерений, осуществляемых в ручном режиме, изменений коэффициентов ТТ и ТН, синхронизации (коррекции) времени с указанием времени до и после синхронизации (коррекции), пропадания питания, замены счетчика, событий, отраженных в журналах событий счетчиков;
  - конфигурирование и параметрирование технических средств ИВК;
  - сбор и хранение журналов событий счетчиков;
  - ведение журнала событий ИВК;
- синхронизацию времени в сервере БД с возможностью коррекции времени в счетчиках электроэнергии;
- аппаратную и программную защиту от несанкционированного изменения параметров и любого изменения данных;
  - самодиагностику с фиксацией результатов в журнале событий.
  - дистанционный доступ к компонентам АИИС

ИВК осуществляет автоматический обмен (передачу и получение) результатами измерений и данными коммерческого учета электроэнергии с субъектами оптового рынка электрической энергии и мощности (ОРЭМ), с другими АИИС КУЭ утвержденного типа, а также с инфраструктурными организациями ОРЭМ, в том числе: АО «АТС», АО «СО ЕЭС».

Обмен результатами измерений и данными коммерческого учета электроэнергии между ИВК, АРМ, информационными системами субъектов оптового рынка и инфраструктурными организациями ОРЭМ осуществляется следующим образом:

- посредством электронной почты в виде электронных документов XML в формате 80020 для передачи данных от сервера БД на APM;
- посредством электронной почты в виде электронных документов XML в формате 80020 для передачи данных от сервера БД или APM во внешние системы;
- информация о средствах измерения, при необходимости, передается в виде электронного документа XML в формате 80030.

Электронные документы XML заверяются электронно-цифровой подписью на APM и/или сервере БД

Информационные каналы связи в АИИС КУЭ построены следующим образом:

- посредством интерфейса RS-485, телефонной линии и модемов SHDSL для передачи данных от счетчиков до ИВК:
- посредством спутникового канала связи (основной канал) и телефонных каналов ТЧ связи, сети сотовой связи GSM каналов (резервные каналы) для передачи данных от уровня ИИК до уровня ИВК;
- посредством локальной вычислительной сети интерфейса Ethernet для передачи данных с сервера баз данных на APM;
- посредством наземного канала связи E1 для передачи данных от уровня ИВК во внешние системы и APM (основной канал);
- посредством спутникового канала для передачи данных от уровня ИВК во внешние системы и APM (резервный канал).

В АИИС КУЭ на функциональном уровне выделена система обеспечения единого времени (СОЕВ), включающая в себя часы Сервера БД и счетчиков. Сервер БД получает шкалу времени UTC(SU) в постоянном режиме от сервера синхронизации времени утвержденного типа ССВ-1Г. Синхронизация часов Сервера БД с сервером синхронизации времени происходит при расхождении более чем на  $\pm 2$  с. Сличение времени часов счетчиков с временем часов Сервера БД осуществляется во время сеанса связи (не реже 1 раза в сутки). Корректировка времени часов счетчиков выполняется при достижении расхождения со временем часов Сервера БД  $\pm 2$  с.

Журналы событий счетчика и сервера отображают факты коррекции времени с обязательной фиксацией времени до и после коррекции или величины коррекции времени, на которую было скорректировано устройство.

Нанесение знака поверки на средство измерений не предусмотрено. Заводской номер в виде цифро-буквенного обозначения наносится типографским способом на формуляр.

# Программное обеспечение

В АИИС КУЭ используется ПО «АльфаЦЕНТР». Уровень защиты ПО от непреднамеренных и преднамеренных изменений предусматривает ведение журналов фиксации ошибок, фиксации изменений параметров, защиты прав пользователей и входа с помощью пароля, защиты передачи данных с помощью контрольных сумм, что соответствует уровню «высокий» в соответствии с Р 50.2.077-2014. Метрологически значимая часть ПО указана в таблице 1.

Таблица 1 - Идентификационные признаки метрологически значимой части ПО

| Идентификационные данные (признаки)             | Значение                         |  |  |
|-------------------------------------------------|----------------------------------|--|--|
| Идентификационное наименование программного     | ac_metrology.dll                 |  |  |
| обеспечения                                     |                                  |  |  |
| Номер версии (идентификационный номер) програм- | не ниже 12.1                     |  |  |
| много обеспечения                               |                                  |  |  |
| Цифровой идентификатор программного обеспечения | 3e736b7f380863f44cc8e6f7bd211c54 |  |  |
| (рассчитываемый по алгоритму MD5)               | 3e/300/1360603144CC8e01/00211C34 |  |  |

#### Метрологические и технические характеристики

Состав измерительных каналов (ИК) и их основные метрологические и технические характеристики приведены в таблицах 2, 3, 4 и 5.

Таблица 2 – Состав ИК

| № ИК | Наименование ИК | TT                | TH                                     | Счетчик         | ИВК       |
|------|-----------------|-------------------|----------------------------------------|-----------------|-----------|
| 1    | 2               | 3                 | 4                                      | 5               | 6         |
| 1    | ЗРУ-10 кВ КС, 1 | ТЛК               | 3НОЛ.06                                | A1802RALQ-      |           |
|      | СШ 10 кВ, яч.5  | Кл.т. 0,2S        | Кл.т. 0,5                              | P4GB-DW-4       |           |
|      |                 | $K_{TT} = 1500/5$ | $K_{TH}=10000/\sqrt{3}:100/\sqrt{3}$   | Кл.т. 0,2S/0,5  |           |
|      |                 | Рег. № 42683-09   | Рег. № 3344-04                         | Рег. № 31857-06 |           |
| 2    | 3РУ-10 кВ КС, 2 | ТЛК               | 3НОЛ.06                                | A1802RALQ-      |           |
|      | СШ 10 кВ, яч.12 | Кл.т. 0,2S        | Кл.т. 0,5                              | P4GB-DW-4       |           |
|      |                 | $K_{TT} = 1500/5$ | $K_{TH} = 10000/\sqrt{3}:100/\sqrt{3}$ | Кл.т. 0,2S/0,5  | ССВ-1Г    |
|      |                 | Рег. № 42683-09   | Рег. № 3344-04                         | Рег. № 31857-06 | Рег. №    |
| 3    | 3РУ-10 кВ КС, 3 | ТЛК               | 3НОЛ.06                                | A1802RALQ-      | 58301-14; |
|      | СШ 10 кВ, яч.29 | Кл.т. 0,2S        | Кл.т. 0,5                              | P4GB-DW-4       | Сервер БД |
|      |                 | $K_{TT} = 1500/5$ | $K_{TH} = 10000/\sqrt{3}:100/\sqrt{3}$ | Кл.т. 0,2S/0,5  |           |
|      |                 | Рег. № 42683-09   | Рег. № 3344-04                         | Рег. № 31857-06 |           |
| 4    | 3РУ-10 кВ КС, 4 | ТЛК               | 3НОЛ.06                                | A1802RALQ-      |           |
|      | СШ 10 кВ, яч.36 | Кл.т. 0,2S        | Кл.т. 0,5                              | P4GB-DW-4       |           |
|      |                 | $K_{TT} = 1500/5$ | $K_{TH} = 10000/\sqrt{3}:100/\sqrt{3}$ | Кл.т. 0,2S/0,5  |           |
|      |                 | Рег. № 42683-09   | Рег. № 3344-04                         | Рег. № 31857-06 |           |

#### Окончание таблицы 2

| 1 | 2 3             |                  | 4                    | 5               | 6         |
|---|-----------------|------------------|----------------------|-----------------|-----------|
| 5 | ПС 110 кВ ГКС,  | ТЛМ-10           | НАЛИ-СЭЩ-10          | СЭТ-            |           |
|   | 3РУ-10 кВ, 1    | Кл.т. 0,5        | Кл.т. 0,5            | 4TM.03M.01      |           |
|   | СШ 10 кВ, яч.6  | $K_{TT} = 300/5$ | $K_{TH} = 10000/100$ | Кл.т. 0,2S/0,5  | ССВ-1Г    |
|   |                 | Рег. № 2473-00   | Рег. № 38394-08      | Рег. № 36697-08 |           |
| 6 | ПС 110 кВ ГКС,  | ТПЛМ-10          | НАМИ-10-95УХЛ2       | СЭТ-            | 58301-14; |
|   | 3РУ-10 кВ, 3    | Кл.т. 0,5        | Кл.т. 0,5            | 4TM.03M.01      | Сервер БД |
|   | СШ 10 кВ, яч.14 | $K_{TT} = 200/5$ | $K_{TH} = 10000/100$ | Кл.т. 0,2S/0,5  |           |
|   |                 | Рег. № 2363-68   | Рег. № 20186-00      | Рег. № 36697-08 |           |

## Примечания:

- 1. Допускается замена ТТ, ТН и счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в таблице 2, при условии, что Предприятие-владелец АИИС КУЭ не претендует на улучшение указанных в таблицах 3 и 4 метрологических характеристик.
- 2. Допускается замена сервера БД АИИС КУЭ без изменения используемого ПО (при условии сохранения цифрового идентификатора ПО) и сервера синхронизации времени на аналогичные утвержденных типов.
- 3. Допускается изменение наименований ИК, без изменения объекта измерений.
- 4. Замена оформляется техническим актом в установленном на Предприятии-владельце АИИС КУЭ порядке. Технический акт хранится совместно с эксплуатационными документами АИИС КУЭ как их неотъемлемая часть.

Таблица 3 – Метрологические характеристики ИК в нормальных условиях применения

| ИК                                   | I <sub>2</sub> ≤ I <sub>изм</sub> < |                                         | изм<І 5                                 | I <sub>5</sub> ≤ I <sub>изм</sub> <i <sub="">20</i> |                                         | I <sub>20</sub> ≤ I <sub>изм</sub> <i <sub="">100</i> |                                         | I <sub>100</sub> ≤ I <sub>изм</sub> ≤I <sub>120</sub> |                             |
|--------------------------------------|-------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------------------|-----------------------------------------|-------------------------------------------------------|-----------------------------------------|-------------------------------------------------------|-----------------------------|
| $N_{\underline{0}}N_{\underline{0}}$ | cos φ                               | $\delta_{\mathrm{Wo}}{}^{\mathrm{A}}$ % | $\delta_{\mathrm{Wo}}{}^{\mathrm{P}}$ % | $\delta_{\mathrm{Wo}}{}^{\mathrm{A}}$ %             | $\delta_{\mathrm{Wo}}{}^{\mathrm{P}}$ % | $\delta_{\mathrm{Wo}}{}^{\mathrm{A}}$ %               | $\delta_{\mathrm{Wo}}{}^{\mathrm{P}}$ % | $\delta_{\mathrm{Wo}}{}^{\mathrm{A}}$ %               | $\delta_{ m Wo}{}^{ m P}$ % |
| 1, 2, 3, 4                           | 0,50                                | ±2,1                                    | ±1,6                                    | ±1,7                                                | ±1,4                                    | ±1,4                                                  | ±1,0                                    | ±1,4                                                  | ±1,0                        |
|                                      | 0,80                                | ±1,3                                    | ±2,0                                    | ±1,1                                                | ±1,7                                    | ±0,9                                                  | ±1,3                                    | ±0,9                                                  | ±1,3                        |
|                                      | 0,87                                | ±1,3                                    | ±2,3                                    | ±1,0                                                | ±1,9                                    | ±0,8                                                  | ±1,5                                    | ±0,8                                                  | ±1,5                        |
|                                      | 1,00                                | ±1,0                                    | -                                       | ±0,8                                                | -                                       | $\pm 0,7$                                             | -                                       | $\pm 0,7$                                             | -                           |
| 5, 6                                 | 0,50                                | -                                       | -                                       | ±5,4                                                | ±2,7                                    | ±2,9                                                  | ±1,5                                    | ±2,2                                                  | ±1,2                        |
|                                      | 0,80                                | -                                       | -                                       | ±2,9                                                | ±4,4                                    | ±1,6                                                  | ±2,4                                    | ±1,2                                                  | ±1,9                        |
|                                      | 0,87                                | -                                       | -                                       | ±2,5                                                | ±5,5                                    | ±1,4                                                  | ±3,0                                    | ±1,1                                                  | ±2,2                        |
|                                      | 1,00                                | -                                       | -                                       | ±1,8                                                | -                                       | ±1,1                                                  | -                                       | ±0,9                                                  | -                           |

Таблица 4 – Метрологические характеристики ИК в рабочих условиях применения

| ИК                                   | 202.6 | $I_2 \leq I_{\text{M3M}} < I_5$        |                                      | $I_5 \le I_{\scriptscriptstyle M3M} < I_{\scriptscriptstyle 20}$ |                                      | $I_{20} \le I_{\text{изм}} < I_{100}$ |                          | $I_{100} \le I_{_{_{\mathit{H3M}}}} \le I_{120}$ |                                  |
|--------------------------------------|-------|----------------------------------------|--------------------------------------|------------------------------------------------------------------|--------------------------------------|---------------------------------------|--------------------------|--------------------------------------------------|----------------------------------|
| $N_{\underline{0}}N_{\underline{0}}$ | cos φ | $\delta_{\mathrm{W}}{}^{\mathrm{A}}$ % | $\delta_{\mathrm{W}}^{\mathrm{P}}$ % | $\delta_{\mathrm{W}}^{\mathrm{A}}$ %                             | $\delta_{\mathrm{W}}^{\mathrm{P}}$ % | $\delta_{ m W}^{ m A}$ %              | $\delta_{ m W}^{ m P}$ % | $\delta_{\mathrm{W}}^{\mathrm{A}}$ %             | $\delta \mathrm{w}^\mathrm{P}$ % |
| 1, 2, 3, 4                           | 0,50  | ±2,2                                   | ±2,1                                 | ±1,7                                                             | ±1,9                                 | ±1,5                                  | ±1,7                     | ±1,5                                             | ±1,7                             |
|                                      | 0,80  | ±1,5                                   | ±2,4                                 | ±1,2                                                             | ±2,2                                 | ±1,1                                  | ±1,9                     | ±1,1                                             | ±1,9                             |
|                                      | 0,87  | ±1,4                                   | ±2,7                                 | ±1,2                                                             | ±2,3                                 | ±1,0                                  | ±2,1                     | ±1,0                                             | ±2,1                             |
|                                      | 1,00  | ±1,2                                   | -                                    | ±0,8                                                             | -                                    | ±0,8                                  | -                        | ±0,8                                             | -                                |
| 5, 6                                 | 0,50  | -                                      | -                                    | ±5,4                                                             | ±3,0                                 | ±3,0                                  | ±2,0                     | ±2,3                                             | ±1,8                             |
|                                      | 0,80  | -                                      | -                                    | ±2,9                                                             | ±4,6                                 | ±1,7                                  | ±2,8                     | ±1,4                                             | ±2,3                             |
|                                      | 0,87  | -                                      | -                                    | ±2,6                                                             | ±5,6                                 | ±1,5                                  | ±3,3                     | ±1,2                                             | ±2,6                             |
|                                      | 1,00  | -                                      | -                                    | ±1,8                                                             | -                                    | ±1,1                                  | -                        | ±0,9                                             | -                                |

Пределы допускаемого значения поправки часов, входящих в COEB, относительно шкалы времени UTC(SU)  $\pm 5$  с

#### Примечание:

 $I_2$  – сила тока 2% относительно номинального тока TT;

 $I_5$  – сила тока 5% относительно номинального тока TT;

 $I_{20}$  – сила тока 20% относительно номинального тока TT;

 $I_{100}$  – сила тока 100% относительно номинального тока TT;

 $I_{120}$  – сила тока 120% относительно номинального тока TT;

 $I_{\mbox{\tiny ИЗМ}}$  — силы тока при измерениях активной и реактивной электрической энергии относительно номинального тока TT;

 $\delta_{Wo}{}^{A}$  — доверительные границы допускаемой основной относительной погрешности при вероятности P=0,95 при измерении активной электрической энергии;

 $\delta_{W_0}^P$  — доверительные границы допускаемой основной относительной погрешности при вероятности P=0,95 при измерении реактивной электрической энергии;

 $\delta_W^A$  — доверительные границы допускаемой относительной погрешности при вероятности P=0,95 при измерении активной электрической энергии в рабочих условиях применения;

 $\delta_W^P$  – доверительные границы допускаемой относительной погрешности при вероятности P=0,95 при измерении реактивной электрической энергии в рабочих условиях применения.

Таблица 5 – Основные технические характеристики ИК

| Таолица 3 — Основные технические характеристики их                         | Значение                 |
|----------------------------------------------------------------------------|--------------------------|
| Наименование характеристики                                                |                          |
| Количество измерительных каналов                                           | 6                        |
| Нормальные условия:                                                        | (2) 5 120                |
| $-$ Tok, % ot $I_{\text{hom}}$                                             | от (2)5 до 120           |
| <ul> <li>напряжение, % от U<sub>ном</sub></li> </ul>                       | от 99 до 101             |
| <ul> <li>коэффициент мощности соѕ ф</li> </ul>                             | 0,5 инд. $-1,0-0,8$ емк. |
| температура окружающего воздуха для счетчиков, °С:                         | От +21 до +25            |
| Рабочие условия эксплуатации:                                              |                          |
| допускаемые значения неинформативных параметров:                           |                          |
| — ток, % от I <sub>ном</sub>                                               | от (2)5 до 120           |
| <ul> <li>напряжение, % от U<sub>ном</sub></li> </ul>                       | от 90 до 110             |
| <ul> <li>коэффициент мощности соѕ ф</li> </ul>                             | 0,5 инд. $-1,0-0,8$ емк. |
| температура окружающего воздуха, °С:                                       |                          |
| - для ТТ и ТН                                                              | От -40 до +40            |
| - для счетчиков                                                            | от 0 до +40              |
| - для сервера                                                              | от +15 до +25            |
| Период измерений активной и реактивной средней мощности и                  |                          |
| приращений электрической энергии, минут                                    | 30                       |
| Период сбора данных со счетчиков электрической энергии, минут              | 30                       |
| Формирование XML-файла для передачи внешним системам                       | Автоматическое           |
| Формирование базы данных с указанием времени измерений и                   |                          |
| времени поступления результатов                                            | Автоматическое           |
| Глубина хранения информации                                                |                          |
| Счетчики:                                                                  |                          |
| <ul> <li>тридцатиминутный профиль нагрузки в двух направлениях,</li> </ul> |                          |
| сутки, не менее                                                            | 100                      |
| Сервер ИВК:                                                                |                          |
| <ul> <li>хранение результатов измерений и информации состояний</li> </ul>  |                          |
| средств измерений, лет, не менее                                           | 3,5                      |

#### Надежность системных решений:

- защита от кратковременных сбоев питания сервера с помощью источника бесперебойного питания;
  - резервный сервер с установленным специализированным ПО;
- резервирование каналов связи между уровнями ИИК и ИВК и между ИВК и внешними системами субъектов ОРЭМ, а также с инфраструктурными организациями ОРЭМ.

# Ведение журналов событий:

- -счётчика, с фиксированием событий:
  - параметрирования;
  - пропадания напряжения;
  - коррекции времени в счетчике.
- ИВК, с фиксированием событий:
  - даты начала регистрации измерений;
  - перерывы электропитания;
  - программные и аппаратные перезапуски;
  - установка и корректировка времени;
  - переход на летнее/зимнее время;
  - нарушение защиты ИВК;
- отсутствие/довосстановление данных с указанием точки измерений и соответствующего интервала времени.

## Защищённость применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
  - счётчика;
  - промежуточных клеммников вторичных цепей напряжения;
  - испытательной коробки;
  - сервера;
- защита информации на программном уровне:
  - результатов измерений при передаче информации (возможность использования цифровой подписи);
  - установка пароля на счетчик;
  - установка пароля на Сервер БД.

#### Знак утверждения типа

наносится типографским способом на титульный лист формуляра АУВП.411711.134.ФО «Система автоматизированная информационно-измерительная коммерческого учета электроэнергии ООО «Газпром энерго» ООО «Газпром трансгаз Волгоград» Фроловское ЛПУ МГ КС «Фролово». Формуляр».

## Комплектность средства измерений

Комплектность АИИС КУЭ приведена в таблице 6.

Таблица 6 – Комплектность АИИС КУЭ

| Наименование                              | Обозначение                     | Количество, шт. |
|-------------------------------------------|---------------------------------|-----------------|
| Трансформаторы тока                       | ТПЛМ-10                         | ?               |
| Трансформаторы тока                       | ТЛМ-10                          | 2               |
| Трансформаторы тока                       | ТЛК                             | 12              |
|                                           | 3HOЛ.06                         | 12              |
| Трансформаторы напряжения                 |                                 | 12              |
| Трансформаторы напряжения                 | НАЛИ-СЭЩ-10                     | 1               |
| Трансформаторы напряжения                 | НАМИ-10-95УХЛ2                  | 1               |
| Счетчики                                  | A1802RALQ-P4GB-DW-4             | 4               |
| Счетчики                                  | CЭT-4TM.03M.01                  | 2               |
| ПО ИВК                                    | АльфаЦЕНТР                      | 1               |
| COEB                                      | CCB-1Γ                          | 1               |
| Сервер БД                                 | Stratus FT Server 4700 P4700-2S | 1               |
| Система автоматизированная информационно- | АУВП.411711.134.ФО              | 1               |
| измерительная коммерческого учета         |                                 |                 |
| электроэнергии ООО "Газпром энерго" ООО   |                                 |                 |
| "Газпром трансгаз Волгоград" Фроловское   |                                 |                 |
| ЛПУ МГ КС "Фролово". Формуляр             |                                 |                 |

## Сведения о методиках (методах) измерений

Методика измерений изложена в документе «Методика измерений электрической энергии с использованием системы автоматизированной информационно-измерительной коммерческого учета электроэнергии ООО «Газпром энерго» ООО «Газпром трансгаз Волгоград» Фроловское ЛПУ МГ КС «Фролово»» Методика измерений аттестована Западно-Сибирским филиалом ФГУП «ВНИИФТРИ». Аттестат аккредитации Западно-Сибирского филиала ФГУП «ВНИИФТРИ» по аттестации методик (методов) измерений и метрологической экспертизе № RA.RU.311735 от 19.07.2016 г.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии ООО «Газпром энерго» ООО «Газпром трансгаз Волгоград» Фроловское ЛПУ МГ КС «Фролово»

ГОСТ Р 8.596-2002 Метрологическое обеспечение измерительных систем. Основные положения.

#### Изготовитель

Инженерно-технический центр Общества с ограниченной ответственностью «Газпром энерго» (Инженерно-технический центр ООО «Газпром энерго»)

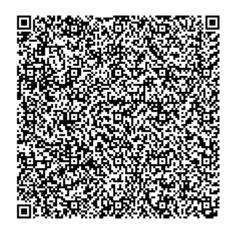
ИНН 7736186950

Адрес: 460000, Российская Федерация, г. Оренбург, ул. Терешковой, д. 295

Телефон: +7 (3532) 687-126 Факс: +7 (3532) 687-127

E-mail: info@of.energo.gazprom.ru.

# Испытательный центр


Западно-Сибирский филиал Федерального государственного унитарного предприятия «Всероссийский научно-исследовательский институт физико-технических и радиотехнических измерений» (Западно-Сибирский филиал ФГУП «ВНИИФТРИ»)

Адрес: 630004, Российская Федерация, г. Новосибирск, проспект Димитрова, д. 4

Телефон (факс): +7 (383) 210-08-14, +7 (383) 210-13-60

E-mail: director@sniim.ru

Аттестат аккредитации Западно-Сибирского филиала ФГУП «ВНИИФТРИ» по проведению испытаний средств измерений в целях утверждения типа M RA.RU.310556 от  $14.01.2015 \, \Gamma$ .

