УТВЕРЖДЕНО

приказом Федерального агентства по техническому регулированию и метрологии от «21» января 2022 г. № 151

Лист № 1 Всего листов 6

Регистрационный № 84414-22

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Анализаторы фазового шума FSPN

Назначение средства измерений

Анализаторы фазового шума FSPN предназначены для измерений уровня фазовых и амплитудных шумов непрерывных СВЧ колебаний

Описание средства измерений

Принцип работы анализаторов фазового шума FSPN основан на переносе сигнала входного СВЧ колебания на низкую частоту с помощью квадратурных демодуляторов и встроенных гетеродинов с малыми фазовыми шумами с последующей обработкой низкочастотного сигнала в двухканальном приемнике, основанном на аналогово-цифровых преобразователях с большим динамическим диапазоном. Цифровая обработка позволяет параллельно получать результаты измерения фазового и амплитудного шумов входного сигнала, а также увеличивать чувствительность прибора за счет применения кросскорреляционной техники.

Конструктивно анализаторы фазового шума FSPN выполнены в виде настольного лабораторного прибора. Управление анализаторами осуществляется с передней панели, оснащенной дисплеем и кнопочным табло, или по интерфейсу дистанционного управления с помощью внешнего ПЭВМ по интерфейсам LAN, GPIB.

К данному типу анализаторов фазового шума FSPN относятся две модификации: FSPN8, FSPN26. Модификации отличаются диапазоном рабочих частот.

Знак поверки может наноситься на верхнюю панель анализаторов фазового шума FSPN.

Серийный номер, идентифицирующий каждый экземпляр средства измерений, в формате шести цифр и информация о модификации СИ наносятся методом наклейки на заднюю панель.

Для предотвращения несанкционированного доступа анализаторы фазового шума FSPN имеют защитную наклейку завода-изготовителя, закрывающую головку винта крепления корпуса.

Общий вид анализаторов фазового шума FSPN, обозначение места для нанесения знака утверждения типа средства измерений представлены на рисунке 1.

Схема пломбировки от несанкционированного доступа и место нанесения серийного номера и модификации средства измерений представлены на рисунке 2.

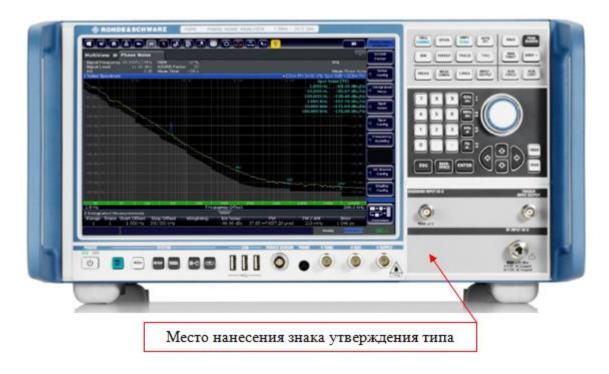


Рисунок 1 - Общий вид средства измерений

Рисунок 2- Схема пломбировки от несанкционированного доступа и место нанесения серийного номера и указания модификации СИ

Программное обеспечение

Программное обеспечение «FW FSPN» предназначено для управления режимами работы анализаторов фазового шума FSPN, обработки измерительных сигналов, управления работой приборов в процессе проведения измерений, отображения хода измерений. Программное обеспечение «FW FSPN» предназначено только для работы с анализаторами фазового шума FSPN и не может быть использовано отдельно от измерительновычислительной платформы этих приборов.

Программное обеспечение реализовано без выделения метрологически значимой части. Влияние программного обеспечения не приводит к выходу метрологических характеристик анализаторов фазового шума FSPN за пределы допускаемых значений.

Уровень защиты программного обеспечения «низкий» в соответствии с Р 50.2.077-2014.

Таблица 1 - Идентификационные данные программного обеспечения (ПО)

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	FW FSPN
Номер версии (идентификационный номер) ПО	не ниже 2.00
Цифровой идентификатор ПО	-

Метрологические и технические характеристики

Таблица 2 – Метрологические характеристики

I аолица 2 – Метрологические характеристики		
Наименование характеристики	Значения хара	актеристики
1	2	
Диапазон частот при измерениях уровня	FSPN8	от 1·10 ⁶ до 8·10 ⁹
фазового и амплитудного шумов, Гц	FSPN26	от $1 \cdot 10^6$ до $2,65 \cdot 10^{10}$
Номинальное значение частоты опорного ква	$1 \cdot 10^{7}$	
Пределы допускаемой относительной погреши генератора	ности частоты опорного	±5·10 ⁻⁸
Диапазон отстроек ΔF от частоты несущей F правового шума, Γ ц	ри измерении уровня	от 1·10 ⁻⁶ до 1·10 ⁹
Диапазон входных уровней сигнала, дБ (1 мВт	от -40 до 30	
Пределы допускаемой абсолютной погрешности измерений уровня фазового	от 100 Гц до 1 МГц включ.	±1,5
шума входного сигнала при уровне измеряемого фазового шума входного сигнала на 15 дБ больше уровня собственных фазовых шумов прибора, в диапазонах отстроек ΔF , дБ	св. 1 до 10 МГц включ.	±2
Пределы допускаемой абсолютной погрешности измерений уровня мощности	от 1 МГц до 8 ГГц включ.	±1
входного сигнала, при уровне мощности входного сигнала от минус 20 дБ (1 мВт) до	св. 8 до 18 ГГц включ.	±2
плюс 15 дБ (1 мВт), в диапазонах частот, дБ	св. 18 до 26,5 ГГц	±3
Уровень собственных фазовых шумов PN _{cw} , не более	см. табл	пицу 3

Продолжение таблицы 2

1			
Диапазон отстроек ΔF от частоты несущей F	до 100 МГц включ.	от 10⁻² до 0,3⋅F	
при измерении уровня амплитудного шума, в диапазонах частот, Гц	свыше 100 МГц	от 10⁻² до 3⋅107	
Пределы допускаемой абсолютной погрешности измерений уровня	от 100 Гц до 1 МГц включ.	±2	
амплитудного шума входного сигнала, в диапазонах отстроек ΔF , д F	св. 1 до 10 МГц	±2,5	
Уровень собственных амплитудных шумов, не более	CM Tani		
Коэффициент уменьшения значений уровня	10 корреляций	5	
собственных фазовых и амплитудных шумов	100 корреляций	10	
при кросс-корреляционной обработке, в	1000 корреляций	15	
зависимости от количества корреляций, не менее, дБ:	10000 корреляций	20	
Диапазон частот низкочастотного входа, Гц	от 10 ⁻² до 3·10 ⁷		
Максимальный уровень входного сигнала по н дБ (1 мВт)	4		
Уровень собственных шумов по низкочастотно	см. таблицу 5		

Таблица 3 — Метрологические характеристики. Уровень собственных фазовых шумов при начальной отстройке 1 Γ ц, количестве корреляций 1 (авто) и уровне сигнала \geq 10 дБ (1 мВт), дБн/ Γ ц 1 , не более

дынт ц, не облес						
Частота	Частота отстройки ΔF					
несущей F	100 Гц	1 кГц	10 кГц	100 кГц	1 МГц	10 МГц
10 МГц	-140	-158	-170	-170	-170	-
100 МГц	-133	-157	-167	-170	-172	-172
1 ГГц	-113	-142	-157	-160	-167	-168
3 ГГц	-103	-132	-147	-150	-160	-168
7 ГГц	-96	-125	-140	-143	-153	-168
10 ГГц	-93	-122	-137	-140	-150	-168
16 ГГц	-89	-118	-133	-136	-146	-165
26 ГГц	-85	-114	-129	-132	-142	-161

 $^{^1}$ Здесь и далее: дБн/Гц - дБ относительно уровня несущей, приведенное к полосе пропускания 1 Гц

Таблица 4 — Метрологические характеристики. Уровень собственных амплитудных шумов при начальной отстройке 1 Γ ц, количестве корреляций 1 (авто) и уровне сигнала \geq 10 дБмВт, дБн/ Γ ц, не более

Частота	Частота отстройки ΔF							
несущей F	1 Гц	10 Гц	100 Гц	1 кГц	10 кГц	100 кГц	1 МГц	10 МГц
от 100 МГц до 1 ГГц включ.	-102	-117	-132	-147	-155	-165	-165	-165
св. 1 до 12 ГГц включ.	-97	-112	-127	-142	-152	-160	-165	-165
св. 12 до 18 ГГц включ.	-87	-102	-117	-132	-147	-160	-165	-165
св.18 до 26,5 ГГц	-77	-92	-107	-122	-137	-150	-160	-165

Таблица 5 — Метрологические характеристики. Уровень собственных шумов по низкочастотному входу, дБ (1 мВт) /Гц, не более

Частота входного	1 Гц	10 Гц	100 Гц	1 кГц	10 кГц	100 кГц	1 МГц	10 МГц	30 МГц
сигнала									
Уровень шума	-117	-127	-142	-151	-158	-160	-160	-160	-160

Таблица 6 - Основные технические характеристики

Наименование характеристики			Значение
Тип входного разъема	FSPN8		N, «розетка»
_		FSPN26	3,5 мм, «вилка»
Рабочие условия применения	•		
- температура окружающей с	реды, °С		от +20 до +30
- относительная влажность во	здуха, %, не бо	пее	80
Условия хранения и транспор			
- температура окружающей с	от -40 до +70		
- относительная влажность во	90		
Масса, кг, не более			25
Габаритные размеры (ширина	а×высота×глуби	на), мм	462×240×504
Параметры электрического - напряжение переменного тока, В			от 100 до 240
питания:	ания: - частота переменного тока, Гц		
Потребляемая мощность, Вт, не более			250
Время прогрева, ч			0,5

Знак утверждения типа

наносится на переднюю панель анализаторов фазового шума FSPN в соответствии с рисунком 1 методом наклейки и на титульный лист руководства по эксплуатации типографским способом.

Комплектность средства измерений

Таблица 8 – Комплектность средства измерений

Наименование	Обозначение	Количество
Анализаторы фазового шума	модификация FSPN8	1 шт.
	или FSPN26	
Комплект ЗИП	-	1 компл.

Наименование	Обозначение	Количество
Руководство по эксплуатации	-	1 экз.

Сведения о методиках (методах) измерений

приведены в разделе 8 "Порядок работы" руководства по эксплуатации

Нормативные и технические документы, устанавливающие требования к анализаторам фазового шума FSPN

Приказ Росстандарта № 1621 от 31.07.2018 Об утверждении государственной поверочной схемы для средств измерений времени и частоты

Приказ Росстандарта № 3461 от 30.12.2019 Об утверждении государственной поверочной схемы для средств измерений мощности электромагнитных колебаний в диапазоне частот от 9 кГц до 37,5 ГГц

ГОСТ Р 8.607-2004 ГСИ. Государственная поверочная схема для средств измерений девиации частоты

ГОСТ Р 8.717-2010 ГСИ. Государственная поверочная схема для средств измерений коэффициента амплитудной модуляции высокочастотных колебаний

Техническая документация изготовителя фирмы "Rohde & Schwarz GmbH & Co. KG"

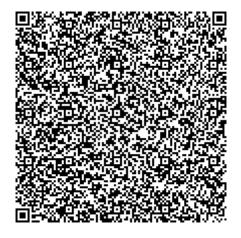
Изготовитель

Фирма "Rohde & Schwarz GmbH & Co. KG", Германия Адрес: Muehldorfstrasse 15, 81671 Munich, Germany

Телефон: +49 89 41 29 0 Факс: +49 89 41 29 12 164

Web-сайт: https://www.rohde-schwarz.com E-mail: customersupport@rohde-schwarz.com

Испытательный центр


Федеральное бюджетное учреждение «Государственный региональный центр стандартизации, метрологии и испытаний в г. Москве и Московской области» (ФБУ «Ростест-Москва»)

Адрес: 117418, г. Москва, Нахимовский проспект, д. 31

Телефон: +7 (495) 544-00-00 Web-сайт: http://www.rostest.ru

Уникальный номер записи об аккредитации RA.RU.310639 в Реестре

аккредитованный лиц.

