УТВЕРЖДЕНО

приказом Федерального агентства по техническому регулированию и метрологии от «24» января 2022 г. № 158

Лист № 1 Всего листов 12

Регистрационный № 84433-22

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Весы электронные вагонные тензометрические ВЭВ-ТМ

Назначение средства измерений

Весы электронные вагонные тензометрические ВЭВ-ТМ (далее – весы) предназначены для:

- повагонного статического измерения массы порожних и груженых железнодорожных вагонов, вагонеток, цистерн и состава из них с сухими сыпучими, твердыми, а также жидкими грузами (с кинематической вязкостью не менее 59 мм²/с);
- повагонного, потележечного или поосного измерения массы в движении порожних и груженых вагонов, цистерн в составе поезда без расцепки и/или поездов в целом с сухими сыпучими, твердыми грузами.

Описание средства измерений

Принцип действия весов основан на преобразовании деформации упругих элементов весоизмерительных тензорезисторных датчиков (далее — датчик), возникающей под действием силы тяжести взвешиваемого груза, в аналоговый или цифровой выходной электрический сигнал, изменяющийся пропорционально массе груза.

В случае использования аналоговых датчиков электрические сигналы с датчиков поступают в устройство обработки аналоговых данных (далее - УОАД) (п.Т.2.2.3 ГОСТ OIML R 76–1–2011) или в аналогово-цифровой преобразователь (далее - АЦП) индикатора (п.Т.2.2.2 ГОСТ OIML R 76–1–2011), где сигналы преобразуются в цифровой код, сигналы с цифровых датчиков поступают в персональный компьютер (ПК).

Результаты взвешивания и значение массы груза отображаются на дисплее индикатора или мониторе ПК и/или передаются через цифровой интерфейс на внешние устройства.

Весы состоят из грузоприемного устройства (далее – ГПУ), УОАД или индикатора и/или программно-технического комплекса (далее - ПТК) на базе ПК со встроенным специализированным программным обеспечением ПО «Весы вагонные ВЭВ-ТМ».

 $\Gamma\Pi$ У, в зависимости от модификации весов, может иметь от одной до четырех грузоприемных платформ ($\Gamma\Pi\Pi$), каждая из которых опирается на четыре датчика.

Управление весами осуществляется с помощью функциональной клавиатуры индикатора и/или ПТК.

В качестве УОАД используются приборы весоизмерительные ПВИ, производства ООО «ТЕНСИБ».

В весах используются:

– датчики весоизмерительные тензорезисторные С, модификации С16і, производства «Hottinger Baldwin Messtechnik GmbH», Германия, регистрационный номер в Федеральном информационном фонде по обеспечению единства измерений (далее – регистрационный номер) 60480-15;

- датчики весоизмерительные тензорезисторные ZS, CLC, WLS, SDS, EDS, модификации ZSFY, производства «Keli Sensing Technology (Ningbo) Co., Ltd.», Китай, регистрационный номер 75819-19;
- датчики весоизмерительные сжатия RC3, производства фирмы «Flintec GmbH», Германия, регистрационный номер 50843-12;
- датчики весоизмерительные SB2, SB, SB5, SB6, SB8, SLB, SB14, BK2, PC1, PC2H, PC6, PCB, модификации SB2, производства фирмы «Flintec GmbH», Германия, регистрационный номер 63476-16;
- датчики весоизмерительные тензорезисторные WBK, производства фирмы «CAS Corporation», Республика Корея, регистрационный номер 56685-14;
- датчики весоизмерительные MB 150, производства ЗАО «Весоизмерительная компания «Тензо-М», Россия, Московская область, Люберецкий район, п. Красково, регистрационный номер 44780-10;
 - в качестве индикаторов используются:
- индикаторы весоизмерительные CI-600A, производства фирмы «CAS Corporation», Республика Корея, регистрационный номер 68370-17;
- приборы весоизмерительные WE, модификация WE2111, производства фирмы «Hottinger Baldwin Messtechnik GmbH», Германия, регистрационный номер 61808-15.

В весах предусмотрены следующие устройства и функции:

- а) при статическом взвешивании (пункты по ГОСТ OIML R 76-1-2011):
 - полуавтоматическое устройство установки на нуль (Т.2.7.2.2);
 - автоматическое устройство установки на нуль (Т.2.7.2.3);
 - устройство первоначальной установки на нуль (Т.2.7.2.4);
 - устройство слежения за нулем (Т.2.7.3);
 - устройство уравновешивания тары устройство выборки массы тары (T.2.7.4.1);
 - устройство предварительного задания массы тары (Т.2.7.5);
 - долговременное хранение измерительной информации (Т.2.8.5);
- б) при взвешивании в движении (пункты по ГОСТ 8.647-2015):
 - устройство первоначальной установки на нуль (п.6.14);
 - автоматическое устройство установки на нуль (п.6.14);
 - устройство слежения за нулем (п.6.15);
 - устройство распознавания вагонов (п.6.19);
 - устройство отображения результатов взвешивания (массы вагона, состава) и печати (п.6.18);
 - устройство автоматического определения положения локомотива и исключения его массы из результатов взвешивания при взвешивании вагонов без расцепки (п.6.18);
 - устройство автоматического определения направления движения (п.6.19);
 - автоматическое определение количества осей, тележек и скорости движения каждого взвешиваемого вагона (п.6.18);
 - устройство сигнализации о перегрузке (п.6.7);
 - устройство сигнализации о превышении предела допускаемой скорости движения (п.6.9).

На ГПУ весов и на корпусе прибора прикрепляется табличка, разрушающаяся при удалении, содержащая следующую информацию, нанесенную типографским способом:

- наименование или товарный знак предприятия-изготовителя;
- условное обозначение весов;
- заводской номер весов;
- класс точности по ГОСТ OIML R 76-1-2011;

- значение максимальной нагрузки (Max) в виде: Max =.....т;
- значение минимальной нагрузки (Min) в виде: Min =.....т;
- значения поверочного интервала (e) и действительной цены деления (d);
- знак утверждения типа средств измерений;
- класс точности при взвешивании вагонов по ГОСТ 8.647-2015 (при наличии);
- класс точности при взвешивании состава из вагонов в целом по ГОСТ 8.647-2015 (при наличии);

для однодиапазонных весов:

- максимальная нагрузка на платформу в виде: Мах_п =..... т;
- минимальная нагрузка на платформу в виде Min_п =..... т;
- цена деления при взвешивании в движении в виде: d =..... кг;
- − значение максимальной выборки массы тары (T⁻);

для двухдиапазонных весов:

- значение (Max_i) в диапазонах взвешивания W_i;
- значение минимальной нагрузки (Min_i) в диапазонах взвешивания W_i;
- значение (e_i) в диапазонах взвешивания W_i;
- значение максимальной выборки массы тары (T_i) в диапазонах взвешивания W_i ;
- максимальная рабочая скорость в виде: V_{max} =..... км/ч;
- минимальная рабочая скорость в виде: V_{min} =..... км/ч.

Весы выпускаются в модификациях:

- однодиапазонные ВЭВ-ТМ [1]-100-50; ВЭВ-ТМ [1]-120-50; ВЭВ-ТМ [1]-150-50; ВЭВ-ТМ [1]-200-100;
- двухдиапазонные ВЭВ-ТМ [1]-60.100-20.50; ВЭВ-ТМ [1]-60.150-20.50; ВЭВ-ТМ [1]-100.200-100.100, которые отличаются друг от друга значениями максимальной нагрузки, поверочного интервала, типами применяемых весоизмерительных датчиков и подключаемых УОАД или индикаторов.

Весы при заказе имеют обозначения вида:

где ВЭТ-ТМ - условное обозначение типа весов;

[1] – режим взвешивания С, Д, СД;

С - только статическое взвешивание;

Д - только взвешивание в движении:

ДВ - повагонное, ДТ- потележечное, ДО - поосное;

СД - статическое взвешивание и повагонное взвешивание в движении; з

[2] – значение (Мах), т:

100; 120; 150; 200 – для однодиапазонных весов;

60.100; 60.150; 100.200 - для двухдиапазонных весов;

[3] – значение (е) при статическом взвешивании, кг:

50; 100 – для однодиапазонных весов;

20.50; 50.100 - для двухдиапазонных весов;

- [4] количество ГПП, шт. 1, 2, 3 или 4;
- [5] обозначение типа УОАД, индикатора;

0 - отсутствует (при использовании цифровых датчиков);

1 - ПВИ; 2 - CI-600A; 3 - WE2111;

- [6] тип используемых датчиков: 1 RC3; 2 C16i; 3 -ZS; 4 SB2; 5 WBK; 6 MB 150;
- [7] класс точности при взвешивании в движении вагона (при наличии): 0,2; 0,5; 1;
- [8] класс точности при взвешивании в движении состава (при наличии): 0,2; 0,5; 1;
- [9] значение d, кг (для режима взвешивания в движении): 20, 50, 100;

[10] – Ех – Взрывозащищенное исполнение (при наличии).

Пример обозначения при заказе: ВЭТ-ТМ С-60.100-20.50-2-3-6 - весы для статического взвешивания двухдиапазонные с Max_{wl} = 60 т, e_{wl} = 20 кг, Max_{wll} = 100 т, e_{wll} = 50 кг, две платформы, прибор CI-600A, датчик ZS.

Общий вид ГПУ весов представлен на рисунках 1 и 2, индикаторов, УОАД и схема пломбировки от несанкционированного доступа и обозначение места для нанесения знака поверки на рисунке 3.

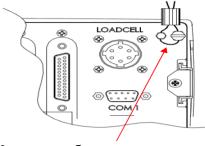


Рисунок 1 – Общий вид различных исполнений ГПУ весов

Рисунок 2 – Общий вид различных исполнений ГПУ

Место пломбировки и нанесения знака поверки в виде разрушаемой наклейки для CI-600A

Место пломбировки и нанесения знака поверки в виде разрушаемой наклейки для WE2111

Место пломбировки и нанесения знака поверки в виде разрушаемой наклейки для УОАД ПВИ

Рисунок 3 – Общий вид индикаторов CI-600A, WE2111 и УОАД ПВИ, схема пломбировки от несанкционированного доступа и обозначение места для нанесения знака поверки

Программное обеспечение

ПО индикаторов является встроенным, используется в стационарной (закрепленной) аппаратной части с программными средствами. ПО ПТК включает в себя ПО «Весы вагонные», осуществляющее окончательную обработку измерительной информации и отображение результатов измерений. ПТК применяется только при использовании датчиков с аналоговым выходным сигналом.

Программное обеспечение «ПО «Весы вагонные» является автономным и состоит из метрологически значимой и метрологически незначимой части.

Метрологически значимая часть защищена от случайных или намеренных изменений следующим образом:

- 1) после запуска программы проводится автоматическое вычисление контрольной суммы по машинному коду (контрольная сумма по CRC-32 со скрытым полиномом) и сравнение результата с хранящимся в исполняемом файле TensibWagonWeight.exe фиксированным значением.
- 2) для защиты от несанкционированного изменения ПО используется электронный ключ. При запуске программы проверяется соответствие версии ПО «Весы вагонные» с информацией о версии, хранящейся в электронном ключе. В случае несовпадения версий, ПО «Весы вагонные» запускается в демонстрационном режиме без возможности проведения измерений.
- 3) используется разграничение прав доступа к режимам работы весов (взвешивание, настройка, калибровка) с помощью пароля;
 - 4) изменение ПО весов через интерфейс пользователя невозможно;
- 5) при изменении метрологически значимых параметров калибровки и настройки формируется соответствующая запись в журнале событий, хранящемся в энергонезависимой памяти:
- 6) хранение данных осуществляется на жестком диске ПТК в качестве запоминающего средства и осуществляется в зашифрованном виде (с использованием контрольной суммы по CRC-32 со скрытым полиномом).

ПО индикаторов CI-600A и WE2111 является встроенным, используется в стационарной (закрепленной) аппаратной части.

Защита от несанкционированного доступа к настройкам и данным измерений обеспечивается защитной пломбой, которая ограничивает доступ к переключателю настройки и калибровки, находящемуся на печатной плате. Изменение метрологически значимых параметров, настройка и калибровка не могут быть осуществлены без нарушения защитной пломбы, вскрытия корпуса и изменения положения переключателя настройки и калибровки. При изменении метрологически значимых параметров калибровки и настройки изменяются показания несбрасываемого счетчика, которые отображаются на дисплее при включении индикаторов. Идентификационные данные ПО и значение несбрасываемого счетчика отображаются при включении индикаторов, а также доступны для просмотра во время работы индикаторов при нажатии специальной комбинации клавиш.

Изменение ПО индикаторов через интерфейс пользователя невозможно. Кроме того, доступ к параметрам калибровки и настройки возможен только при нарушении пломбы или саморазрушающейся наклейки и, в зависимости от исполнения индикатора, изменения положения переключателя калибровки или перемычки на печатной плате. Кроме того, изменение ПО невозможно без применения специализированного оборудования производителя.

Нормирование метрологических характеристик проведено с учетом применения ПО.

Конструкция весов исключает возможность несанкционированного влияния на ПО и измерительную информацию.

Уровень защиты ПО и измерительной информации от преднамеренных и непреднамеренных изменений в соответствии с Р 50.2.077-2014 — «высокий».

Идентификационные данные ПО приведены в таблице 1.

Таблица 1 – Идентификационные данные ПО

Идентификационные данные	Значение		
(признаки)	ПТК	CI-600A	WE2111
Идентификационное наименование ПО	«Весы вагонные» (TensibWagonWeight.exe). Метрологически значимая часть AnalizeNextMeasure*	_	_
Номер версии (идентификаци- онный номер) ПО	1.0.0.11)	$1.XX^{2)}$	не ниже v1.0x ²⁾
Цифровой идентификатор ПО	95E64856F9EF16A4CB9C56A42B FE787D	_	_
Алгоритм вычисления контрольной суммы исполняемого кода	MD5		

где – х принимает значения от 0 до 9

- 1) обозначение номера версии метрологически значимой версии ПО
- 2) обозначение версии метрологически незначимой части ПО

Метрологические и технические характеристики

1 Статическое взвешивание

Класс точности по ГОСТ OIML R 76-1-2011 средний (III).

Значения нагрузки (Max), (Min), поверочного интервала (e), действительной цены деления (d), интервалов нагрузки (m), пределов допускаемой погрешности (mpe) и числа поверочных интервалов (n) при поверке для однодиапазонных весов приведены в таблице 2, значения (Max_i), (Min_i), (d_i), (e_i), интервалов нагрузки (m_i,), пределов допускаемой погрешности (mpe_i) и числа поверочных интервалов (n_i) при поверке в соответствующих диапазонах взвешивания (W_i) для двухдиапазонных весов в таблице 3.

Таблица 2 – Метрологические характеристики однодиапазонных весов

Ogosvovovo vo zvovovovo	Max,	Min,	d = e,	m,	mpe,	12
Обозначение модификации	T	T	ΚΓ	T	КГ	n
ВЭВ-ТМ С(СД)-100-[3]-[4]-	100	1	50	от 1 до 25 включ.	±25	2000
[5]-[6]-[7]-[8]-[9]-[10]	100	1	30	св. 25до 100 включ.	±50	2000
DOD TM C (CII) 120 [2] [4]				от 1 до 25 включ.	±25	
ВЭВ-ТМ С (СД)-120-[3]-[4]- [5]-[6]-[7]-[8]-[9]-[10]	120	1	50	св. 25до 100 включ.	±50	2400
[3]-[0]-[7]-[6]-[9]-[10]				св. 100 до 120 включ.	±75	
ВЭВ-ТМ С(СД)-150-[3]-[4]-				от 1 до 25 включ.	±25	
1 1 1	150	1	50	св. 25 до 100 включ.	±50	3000
[5]-[6]-[7]-[8]-[9]-[10]				св. 100 до 150 включ.	±75	
ВЭВ-ТМ С(СД)-200-[3]-[4]-	200	2	100	от 2 до 50 включ.	±50	2000
[5]-[6]-[7]-[8]-[9]-[10]	200	2	100	св. 50 до 200 включ.	±100	2000

Таблица 3 – Метрологические характеристики двухдиапазонных весов

Обозначение	Wi	Min _i ,	Max _i ,	$d_i = e_i$	m _i ,	mpe _i ,	ni
модификации	VV 1	T	T	КГ	Т	КГ	111
					от 0,4 до 10 включ.	±10	
DOD TM C [2] [2] [4]	WI	0,4	60	20	св. 10 до 40 включ.	±20	3000
B9B-TM C-[2]-[3]-[4]-					св. 40 до 60 включ.	±30	
[5]-[6]-[7]-[8]-[9]-[10]	WII	1	100	50	от 1 до 25 включ.	±25	2000
	****	_	100		св. 25 до 100 включ.	±50	2000
					от 0,4 до 10 включ.	±10	
	WI	0,4	60	20	св. 10 до 40 включ.	±20	3000
ВЭВ-ТМ С-[2]-[3]-[4]-					св. 40 до 60 включ.	±30	
[5]-[6]-[7]-[8]-[9]-[10]					от 1 до 25 включ.	±25	
	WII	1	150	50	св. 25 до 100 включ.	±50	3000
					св. 100 до 150 включ.	±75	
	WI	1	100	50	от 1 до 25 включ.	±25	2000
ВЭВ-ТМ С-[2]-[3]-[4]-	VVI	1	100	30	св. 25 до 100 включ.	±50	2000
[5]-[6]-[7]-[8]-[9]-[10]	WII	2	200	100	от 2 до 50 включ.	±50	2000
	VV 11	2	200	100	св. 50 до 200 включ.	±100	2000

Пределы допускаемой погрешности весов в эксплуатации равны удвоенному значению пределов допускаемой погрешности при поверке.

Пределы допускаемой погрешности после выборки массы тары соответствуют пределам массы нетто при любом значении массы тары.

Таблица 4 – Метрологические характеристики весов по ГОСТ OIML R 76-1-2011

Наименование характеристики	Значение
Пределы допускаемой погрешности устройства установки на нуль, кг	±0,25e
Показания индикации массы, кг, не более	Max +9e
Диапазон выборки массы тары (Т-), % от Мах	от 0 до 100
Диапазон установки на нуль и слежения за нулём, % от Мах, не более	±2
Диапазон первоначальной установки нуля, % от Мах, не более	±10

2 Взвешивание в движении

Значения максимальной нагрузки (Max), максимальной нагрузки на $\Gamma\Pi\Pi$ (Max_п), минимальной нагрузки (Min), минимальной нагрузки на $\Gamma\Pi\Pi$ (Min_п) по Γ OCT 8.647-2015 представлены в таблице 5.

Таблица 5 – Метрологические характеристики весов по ГОСТ 8.647-2015

	Значение для модификации					
	ВЭВ-ТМ	ВЭВ-ТМ	ВЭВ-ТМ	ВЭВ-ТМ		
Наименование	[1]-100-[3]-	[1]-100-[3]-	[1]-100-[3]-	[1]-100-[3]-		
характеристики	[4]-[5]-[6] -	[4]-[5]-[6] -	[4]-[5]-[6] -	[4]-[5]-[6] -		
	[7]-[8]-[9]-	[7]-[8]-[9]-	[7]-[8]-[9]-	[7]-[8]-[9]-		
	[10]	[10]	[10]	[10]		
Класс точности при взвешивании	0.2: 0.5: 1					
вагона в составе		0,2,	0,2; 0,5; 1			

Продолжение таблицы 5

Класс точности при взвешивании составов	0,2; 0,5; 1			
Действительная цена деления весов (d), кг	20*; 50; 100			
Максимальная нагрузка (Мах), максимальная масса вагона, т	100	120	150	200
Минимальная нагрузка (Min), минимальная масса вагона, т	10	10	10	10
Максимальная нагрузка на платформу при взвешивании в движении по частям**, Мах _п , т	100/n	120/n	150/n	200/n
Минимальная нагрузка на платформу при взвешивании в движении по частям**, Міп, т	10/n	10/n	10/n	10/n

^{*} Для модификации ВЭВ-ТМ [1]-100-[Д]-[4]-[5]-[6]-[7]-[8]-[9]-[10] при повагонном взвешивании в движении.

Действительная цена деления в зависимости от максимальной нагрузки и классов точности приведена в таблицах 6 и 7.

Таблица 6 – Действительная цена деления для классов точности весов в зависимости от максимальной нагрузки и классов точности для модификаций ВЭВ-ТМ [1]-[2]-[СД]-[4]-[5]-[6]-[7]-[8]-[9]-[10]

	Класс точности		
Мах, т	0,2	0,5	
	и цена деления, кг		
100	50	50	
120	50	50	
150	50	100	
200	100	100	

Таблица 7 — Действительная цена деления для классов точности весов в зависимости от максимальной нагрузки и классов точности для модификаций ВЭВ-ТМ [1]-[2][Л]-[4]-[5]-[6]-[7]-[8]-[9]-[10]

	Класс точности				
Мах, т	0,2	0,5	1		
	Действительная цена деления, кг				
100	20,50	50; 100	100		
120	50	50; 100	100		
150	50	100	-		
200	50	100	-		

Пределы допускаемой погрешности при взвешивании в движении вагона при первичной поверке, в зависимости от класса точности по ГОСТ 8.647-2015 и диапазона взвешивания приведены в таблице 8.

^{**} n — число последовательных взвешиваний одного вагона по частям.

T () T	r U			
\mathbf{I} аолина $\mathbf{X} = \mathbf{I}$	ределы допускаемой по	спешности ппи	и взвеннивании в	пвижении вагона
тиолици о т.	пределы допускаемон по	. решпости при	n bobemnbannin b	douwelling parona

	Пределы допускаемой погрешности в диапазоне			
Класс точности	от Міп до 35 % Мах включ.,	св. 35 % Max,		
	% от 35 % Мах	% от измеряемой массы		
0,2	±0,10	±0,10		
0,5	±0,25	±0,25		
1	±0,50	±0,50		

Пределы допускаемой погрешности в эксплуатации соответствуют удвоенным значениям, приведенным в таблице 8.

При взвешивании вагона в составе без расцепки при первичной поверке не более чем 10 полученных значений погрешности весов могут превышать пределы, приведенные в таблице 8, но не должны превышать пределы допускаемой погрешности в эксплуатации.

Пределы допускаемой погрешности весов при взвешивании в движении состава из (n) вагонов в целом при первичной поверке, в зависимости от класса точности по ГОСТ 8.647-2015 и диапазона взвешивания приведены в таблице 9.

Таблица 9 – Пределы допускаемой погрешности весов при взвешивании в движении состава из (n) вагонов в целом

	(ii) but oned b design.				
	Пределы допускаемой погрешности в диапазон				
Класс точности	от Min · n до 35 % Max · n включ.,	св. 35 % Max·n,			
	% от 35 % Max · n	% от измеряемой массы			
0,2	±0,10	±0,10			
0,5	±0,25	±0,25			
1 ± 0.50 ± 0.50					
где n – количество контрольных вагонов в составе					

Пределы допускаемой погрешности в эксплуатации соответствуют удвоенным значениям, приведенным в таблице 9.

Таблица 10 – Основные технические характеристики

Tuominga 10 Octiobilisto Textim teetkiio kapaktepiiotiikii	
Наименование характеристики	Значение
Особый диапазон рабочей температуры для ГПУ с датчиками	
(п. 3.9.2.2 ГОСТ OIML R 76-1-2011 и п. 6.10 ГОСТ 8.647-2015), °C:	
- C16i	от -50 до +50
- ZSFY	от -40 до +40
- RC3	от -10 до +40
- SB2	от -10 до +40
- WBK, для класса точности по ГОСТ 8.631-2013:	
- C3	от -40 до +50
- C4	от -20 до +50
- MB 150	от -30 до +40
Особый диапазон рабочих температур, °С, для:	
- ПВИ	от -50 до +50

Продолжение таблицы 10

	1 71
Диапазон рабочих температур, °С, для:	
- индикаторов CI-600A, WE2111	от -10 до +40
- ПТК	от -10 до +40
Максимальная рабочая скорость (V _{max}), км/ч	15
Минимальная рабочая скорость (V_{min}), км/ч	1
Параметры электрического питания от сети переменного тока:	
- напряжением, В	от 195,5 до 253
- частотой, Гц	от 49 до 51
Потребляемая мощность, В-А, не более	1000
Время прогрева весов, мин, не более	10
Габаритные размеры ГПУ весов, мм:	
- длина	от 1450 до 32000
- ширина	от 1400 до 5200
- высота	от 300 до 2000
Масса ГПУ весов, кг	от 2000 до 60000

Знак утверждения типа

наносится на титульный лист Руководства по эксплуатации типографским способом и на табличку, прикрепленную на ГПУ или на индикаторе, фотохимическим способом.

Комплектность средства измерения

Таблица 11 – Комплектность средства измерений

Наименование	Обозначение	Количество
Весы электронные вагонные	BЭB-TM	1 шт.
тензометрические	DOD-TWI	1 ш1.
Руководство по эксплуатации	28.29.31-011-74871749-2020 РЭ	1 экз.
Паспорт	28.29.31-011-74871749-2020 ПС	1 экз.

Сведения о методиках (методах) измерений

приведены в руководстве по эксплуатации (раздел 2 «Принцип действия и конструкция»).

Нормативные и технические документы, устанавливающие требования к весам электронным вагонным тензометрическим ВЭВ-ТМ

ГОСТ OIML R 76-1-2011 Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания

ГОСТ 8.647-2015 Весы вагонные автоматические. Часть 1. Метрологические и технические требования. Методы испытаний

Приказ Росстандарта от 29 декабря 2018 № 2818 Об утверждении Государственной поверочной схемы для средств измерений массы

ТУ 28.29.31-004-74871749-2020 Весы электронные вагонные тензометрические ВЭВ-ТМ. Технические условия

Изготовитель

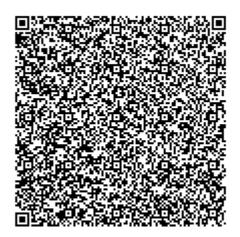
Общество с ограниченной ответственностью «ТЕНСИБ» (ООО «ТЕНСИБ»)

ИНН 2466119904

Адрес: 660049, г. Красноярск, ул. Сурикова, д.6, офис 79 Телефон (факс): +7 (391) 240-96-17, 242-37-85, 227-58-75

E-mail: info@tensib.ru www.tensib.ru

Испытательный центр


Закрытое акционерное общество Консалтинго-инжиниринговое предприятие «Метрологический центр энергоресурсов» (ЗАО КИП «МЦЭ»)

Адрес: 125424, Россия, г. Москва, Волоколамское шоссе, д. 88, стр. 8

Телефон (факс): +7 (495) 491-78-12

E-mail: sittek@mail.ru

Аттестат аккредитации ЗАО КИП «МЦЭ» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.311313

