УТВЕРЖДЕНО

приказом Федерального агентства по техническому регулированию и метрологии от «4» февраля 2022 г. № 277

Лист № 1 Всего листов 9

Регистрационный № 84567-22

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии ООО «Газпром энерго» ООО «Газпром добыча Уренгой» УГП-11

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии ООО «Газпром энерго» ООО «Газпром добыча Уренгой» УГП-11 (далее – АИИС КУЭ) предназначена для измерений приращений активной и реактивной электрической энергии, потребленной и переданной за установленные интервалы времени, сбора, обработки, хранения и передачи полученной информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, двухуровневую систему с централизованным управлением и распределенной функцией измерений.

АИИС КУЭ состоит из двух уровней:

- 1-й уровень измерительно-информационные комплексы (ИИК), включающие в себя измерительные трансформаторы напряжения (ТН), измерительные трансформаторы тока (ТТ), многофункциональные счетчики активной и реактивной электрической энергии (далее счетчики), вторичные измерительные цепи и технические средства приема-передачи данных;
- 2-й уровень информационно-вычислительный комплекс (ИВК), выполненный на основе серверного оборудования промышленного исполнения. ИВК включает в себя специализированное программное обеспечение «АльфаЦЕНТР», каналообразующую аппаратуру, серверы баз данных (БД) и автоматизированные рабочие места (АРМ) ООО «Газпром энерго» и АО «Газпром энергосбыт».

ИИК, ИВК, технические средства приема-передачи данных и линии связи образуют измерительные каналы (ИК).

Первичные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям измерительных цепей поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной, реактивной и полной мощности, которые усредняются за период 0,02 с. Измерительная информация на выходе счетчика без учета коэффициента трансформации:

-активная и реактивная электрическая энергия, как интеграл по времени от средней за период 0,02 с активной и реактивной мощности, соответственно, вычисляемая для интервалов времени 30 минут;

-средняя на интервале времени 30 минут активная и реактивная электрическая мощность.

ИВК обеспечивает выполнение следующих функций:

- -периодический (один раз в сутки) и по запросу автоматический сбор результатов измерений электрической энергии;
- -автоматический сбор данных о состоянии средств измерений и состоянии объектов измерений;
 - -хранение не менее 3,5 лет результатов измерений и журналов событий;
- -автоматический сбор результатов измерений после восстановления работы каналов связи, восстановления питания;
- -перемножение результатов измерений, хранящихся в базе данных, на коэффициенты трансформации TT и TH;
 - -формирование отчетных документов;
- -ведение журнала событий с фиксацией изменений результатов измерений, осуществляемых в ручном режиме, изменений коэффициентов ТТ и ТН, синхронизации (коррекции) времени с указанием времени до и после синхронизации (коррекции), пропадания питания, замены счетчика, событий, отраженных в журналах событий счетчиков;
 - -конфигурирование и параметрирование технических средств ИВК;
 - -сбор и хранение журналов событий счетчиков;
 - -ведение журнала событий ИВК;
- -синхронизацию времени в сервере БД с возможностью коррекции времени в счетчиках электроэнергии;
- -аппаратную и программную защиту от несанкционированного изменения параметров и любого изменения данных;
 - -самодиагностику с фиксацией результатов в журнале событий.
 - -дистанционный доступ к компонентам АИИС

ИВК осуществляет автоматический обмен (передачу и получение) результатами измерений и данными коммерческого учета электроэнергии с субъектами оптового рынка электрической энергии и мощности (ОРЭМ), с другими АИИС КУЭ утвержденного типа, а также с инфраструктурными организациями ОРЭМ, в том числе: АО «АТС», АО «СО ЕЭС».

Обмен результатами измерений и данными коммерческого учета электроэнергии между ИВК, АРМ, информационными системами субъектов оптового рынка и инфраструктурными организациями ОРЭМ осуществляется следующим образом:

- посредством электронной почты в виде электронных документов XML в формате 80020 для передачи данных от сервера БД на APM;
- посредством электронной почты в виде электронных документов XML в формате 80020 для передачи данных от сервера БД или APM во внешние системы;
- информация о средствах измерения, при необходимости, передается в виде электронного документа XML в формате 80030.

Электронные документы XML заверяются электронно-цифровой подписью на APM и/или сервере БД

Информационные каналы связи в АИИС КУЭ построены следующим образом:

- -посредством интерфейса RS-485, телефонной линии и модемов SHDSL для передачи данных от счетчиков до ИВК;
- -посредством спутникового канала связи (основной канал) и телефонных каналов ТЧ связи, сети сотовой связи GSM каналов (резервные каналы) для передачи данных от уровня ИИК до уровня ИВК;
- -посредством локальной вычислительной сети интерфейса Ethernet для передачи данных с сервера баз данных на APM;

- -посредством наземного канала связи E1 для передачи данных от уровня ИВК во внешние системы с сервера баз данных на APM (основной канал);
- –посредством спутникового канала для передачи данных от уровня ИВК во внешние системы с сервера баз данных на АРМ (резервный канал).

В АИИС КУЭ на функциональном уровне выделена система обеспечения единого времени (СОЕВ), включающая в себя часы Сервера БД и счетчиков. Сервер БД получает шкалу времени UTC(SU) в постоянном режиме от сервера синхронизации времени утвержденного типа ССВ-1Г. Синхронизация часов Сервера БД с сервером синхронизации времени происходит при расхождении более чем на ± 2 с. Сличение времени часов счетчиков с временем часов Сервера БД осуществляется во время сеанса связи (не реже 1 раза в сутки). Корректировка времени часов счетчиков выполняется при достижении расхождения со временем часов Сервера БД ± 2 с.

Журналы событий счетчика и сервера отображают факты коррекции времени с обязательной фиксацией времени до и после коррекции или величины коррекции времени, на которую было скорректировано устройство.

Нанесение знака поверки на средство измерений не предусмотрено. Заводской номер в виде цифро-буквенного обозначения наносится на формуляр.

Программное обеспечение

В АИИС КУЭ используется ПО «АльфаЦЕНТР». Уровень защиты ПО от непреднамеренных и преднамеренных изменений предусматривает ведение журналов фиксации ошибок, фиксации изменений параметров, защиты прав пользователей и входа с помощью пароля, защиты передачи данных с помощью контрольных сумм, что соответствует уровню «высокий» в соответствии с Р 50.2.077-2014. Метрологически значимая часть ПО указана в таблице 1.

Таблица 1 - Идентификационные признаки метрологически значимой части ПО

Идентификационные данные (признаки)	Значение	
Идентификационное наименование программного	ag matrology dll	
обеспечения	Значение ас_metrology.dll не ниже 12.1 3e736b7f380863f44cc8e6f7bd211c54	
Номер версии (идентификационный номер)	на пирка 12.1	
программного обеспечения	не ниже 12.1	
Цифровой идентификатор программного обеспечения	20726b7f280862f44co8o6f7bd211c5	
(рассчитываемый по алгоритму MD5)	30730071300003144CC0C01700211C34	

Метрологические и технические характеристики

Состав измерительных каналов (ИК) и их основные метрологические и технические характеристики приведены в таблицах 2, 3, 4 и 5.

Таблица 2 – Состав ИК

№	Наименование ИК	TT	TH	Счетчик	ИВК
ИК					
1	ПС 220/110/6 кВ "Оленья", ЗРУ-6 кВ, яч. 29	ТЛМ-10 Кл.т. 0,5 Ктт = 300/5 Рег. № 2473-69	НАМИ-10 Кл.т. 0,2 Ктн = 6000/100 Рег. № 11094-87	AS1440-512- RAL-P3W-B Кл.т. 0,5S/1 Per. № 48535- 11	
2	ПС 220/110/6 кВ "Оленья", ЗРУ-6 кВ, яч. 27	ТЛО-10 Кл.т. 0,2S Ктт = 100/5 Рег. № 25433- 03	НАМИ-10 Кл.т. 0,2 Ктн = 6000/100 Рег. № 11094-87	AS1440-512- RAL-P3W-B Кл.т. 0,5S/1 Per. № 48535- 11	
3	ПС 220/110/6 кВ "Оленья", ЗРУ-6 кВ, яч. 23	ТВЛМ-10 Кл.т. 0,5 Ктт = 200/5 Рег. № 1856-63	НАМИ-10 Кл.т. 0,2 Ктн = 6000/100 Рег. № 11094-87	AS1440-512- RAL-P3W-B Кл.т. 0,5S/1 Per. № 48535- 11	CCD 1E
4	ПС 220/110/6 кВ "Оленья", ЗРУ-6 кВ, яч. 15	ТЛМ-10 Кл.т. 0,5 Ктт = 300/5 Рег. № 2473-69	НАМИ-10 Кл.т. 0,2 Ктн = 6000/100 Рег. № 11094-87	AS1440-512- RAL-P3W-B Кл.т. 0,5S/1 Per. № 48535- 11	CCB-1Г Рег. № 58301- 14; Сервер
5	ПС 220/110/6 кВ "Оленья", ЗРУ-6 кВ, яч. 13	ТЛМ-10 Кл.т. 0,5 Ктт = 300/5 Рег. № 2473-69	НАМИ-10 Кл.т. 0,2 Ктн = 6000/100 Рег. № 11094-87	AS1440-512- RAL-P3W-B Кл.т. 0,5S/1 Per. № 48535- 11	БД
6	ПС 220/110/6 кВ "Оленья", ЗРУ-6 кВ, яч. 11	ТЛМ-10 Кл.т. 0,5 Ктт = 300/5 Рег. № 2473-69	НАМИ-10 Кл.т. 0,2 Ктн = 6000/100 Рег. № 11094-87	AS1440-512- RAL-P3W-B Кл.т. 0,5S/1 Per. № 48535- 11	
7	ПС 220/110/6 кВ "Оленья", ЗРУ-6 кВ, яч. 9	ТВЛМ-10 Кл.т. 0,5 Ктт = 200/5 Рег. № 1856-63	НАМИ-10 Кл.т. 0,2 Ктн = 6000/100 Рег. № 11094- 87	AS1440-512- RAL-P3W-B Кл.т. 0,5S/1 Per. № 48535- 11	

№ ИК	Наименование ИК	TT	TH	Счетчик	ИВК
8	ПС 220/110/6 кВ "Оленья", ЗРУ-6 кВ, яч. 7	ТОЛ 10 Кл.т. 0,5 Ктт = 800/5 Рег. № 7069-79	НАМИ-10 Кл.т. 0,2 Ктн = 6000/100 Рег. № 11094-87	AS1440-512- RAL-P3W-B Кл.т. 0,5S/1 Рег. № 48535- 11	
9	ПС 220/110/6 кВ "Оленья", ЗРУ-6 кВ, яч. 8	ТВЛМ-10 Кл.т. 0,5 Ктт = 200/5 Рег. № 1856-63	НАМИ-10 Кл.т. 0,2 Ктн = 6000/100 Рег. № 11094-87	AS1440-512- RAL-P3W-B Кл.т. 0,5S/1 Per. № 48535- 11	
10	ПС 220/110/6 кВ "Оленья", ЗРУ-6 кВ, яч. 10	ТЛМ-10 Кл.т. 0,5 Ктт = 300/5 Рег. № 2473-69	НАМИ-10 Кл.т. 0,2 Ктн = 6000/100 Рег. № 11094-87	AS1440-512- RAL-P3W-B Кл.т. 0,5S/1 Per. № 48535- 11	
11	ПС 220/110/6 кВ "Оленья", ЗРУ-6 кВ, яч. 12	ТВЛМ-10 Кл.т. 0,5 Ктт = 200/5 Рег. № 1856-63	НАМИ-10 Кл.т. 0,2 Ктн = 6000/100 Рег. № 11094-87	AS1440-512- RAL-P3W-B Кл.т. 0,5S/1 Рег. № 48535- 11	CCB-1Г Рег. № 58301-
12	ПС 220/110/6 кВ "Оленья", ЗРУ-6 кВ, яч. 18	ТЛМ-10 Кл.т. 0,5 Ктт = 300/5 Рег. № 2473-69	НАМИ-10 Кл.т. 0,2 Ктн = 6000/100 Рег. № 11094-87	AS1440-512- RAL-P3W-B Кл.т. 0,5S/1 Per. № 48535- 11	14; Сервер БД
13	ПС 220/110/6 кВ "Оленья", ЗРУ-6 кВ, яч. 20	ТОЛ 10 Кл.т. 0,5 Ктт = 800/5 Рег. № 7069-79	НАМИ-10 Кл.т. 0,2 Ктн = 6000/100 Рег. № 11094-87	AS1440-512- RAL-P3W-B Кл.т. 0,5S/1 Per. № 48535- 11	
14	ПС 220/110/6 кВ "Оленья", ЗРУ-6 кВ, яч. 22	ТЛМ-10 Кл.т. 0,5 Ктт = 150/5 Рег. № 2473-69	НАМИ-10 Кл.т. 0,2 Ктн = 6000/100 Рег. № 11094-87	AS1440-512- RAL-P3W-B Кл.т. 0,5S/1 Per. № 48535- 11	
15	ПС 220/110/6 кВ "Оленья", ЗРУ-6 кВ, яч. 28	ТЛО-10 Кл.т. 0,2S Ктт = 200/5 Рег. № 25433- 03	НАМИ-10 Кл.т. 0,2 Ктн = 6000/100 Рег. № 11094-87	AS1440-512- RAL-P3W-B Кл.т. 0,5S/1 Рег. № 48535- 11	

No	Наименование ИК	TT	TH	Счетчик	ИВК
ИК					
16	ПС 220/110/6 кВ	ТЛМ-10	НАМИ-10	AS1440-512-	ССВ-1Г
	"Оленья", ЗРУ-6 кВ, яч. 30	Кл.т. 0,5	Кл.т. 0,2	RAL-P3W-B	Рег. №
		$K_{TT} = 300/5$	$K_{TH} = 6000/100$	Кл.т. 0,5S/1	58301-
		Рег. № 2473-69	Рег. № 11094-87	Рег. № 48535-	14;
				11	Сервер
					БД

Примечания:

- 1. Допускается замена ТТ, ТН и счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в таблице 2, при условии, что Предприятие-владелец АИИС КУЭ не претендует на улучшение указанных в таблицах 3 и 4 метрологических характеристик.
- 2. Допускается замена сервера БД АИИС КУЭ без изменения используемого ПО (при условии сохранения цифрового идентификатора ПО) и сервера синхронизации времени на аналогичные утвержденных типов.
- 3. Допускается изменение наименований ИК, без изменения объекта измерений.
- 4. Замена оформляется техническим актом в установленном на Предприятии-владельце АИИС КУЭ порядке.
- 5. Технический акт хранится совместно с эксплуатационными документами АИИС КУЭ как их неотъемлемая часть.

Таблица 3 – Метрологические характеристики ИК в нормальных условиях применения

ИК	200.00	$I_2 \leq I$	изм<І 5	I ₅ ≤ I и	$_{3M}$ < I_{20}	I ₂₀ ≤ I ₁	_{13M} <i <sub="">100</i>	I ₁₀₀ ≤ I ₁	_{изм} ≤I ₁₂₀
N_0N_0	cos φ	$\delta_{\mathrm{Wo}}{}^{\mathrm{A}}$ %	$\delta_{\mathrm{Wo}}{}^{\mathrm{P}}$ %						
2, 15	0,50	±2,1	±1,9	±1,6	±1,8	±1,1	±1,2	±1,1	±1,2
	0,80	±1,5	±2,2	±1,3	±1,9	±0,9	±1,3	±0,9	±1,3
	0,87	±1,5	±2,4	±1,3	±2,0	±0,8	±1,4	±0,8	±1,4
	1,00	±1,4	-	±0,8	-	±0,7	-	±0,7	-
1, 3-14,	0,50	-	-	±5,4	±2,9	±2,8	±1,7	±2,0	±1,4
16	0,80	-	-	±3,0	±4,5	±1,6	±2,4	±1,2	±1,9
	0,87	-	-	±2,6	±5,5	±1,4	±2,9	±1,1	±2,2
	1,00	-	-	±1,8	-	±1,1	-	±0,9	-

Таблица 4 – Метрологические характеристики ИК в рабочих условиях применения

ИК	200.0	$I_2 \leq I$	<u>изм</u> <i 5<="" th=""><th>I₅≤ I _и</th><th>$I_{3M} < I_{20}$</th><th>I₂₀≤ I ₁</th><th>_{I3M}<i <sub="">100</i></th><th>$I_{100} \leq I_1$</th><th>изм≤I 120</th></i>	I ₅ ≤ I _и	$I_{3M} < I_{20}$	I ₂₀ ≤ I ₁	_{I3M} <i <sub="">100</i>	$I_{100} \leq I_1$	изм≤I 120
N_0N_0	cos φ	$\delta_{\mathrm{W}}^{\mathrm{A}}$ %	$\delta_{\mathrm{W}}^{\mathrm{P}}$ %	$\delta_{\mathrm{W}}^{\mathrm{A}}$ %	$\delta_{\mathrm{W}}^{\mathrm{P}}$ %	$\delta_{\mathrm{W}}^{\mathrm{A}}$ %	$\delta_{\mathrm{W}}^{\mathrm{P}}$ %	$\delta_{ m W}^{ m A}$ %	$\delta_{ m W}^{ m P}$ %
2, 15	0,50	±2,5	±3,2	±2,1	±3,2	±1,7	±2,9	±1,7	±2,9
	0,80	$\pm 2,0$	$\pm 3,4$	±1,9	±3,3	±1,6	$\pm 3,0$	±1,6	$\pm 3,0$
	0,87	±2,0	±3,5	±1,9	±3,3	±1,6	±3,0	±1,6	±3,0
	1,00	±1,9	-	±1,1	-	±1,1	-	±1,1	-
1, 3-14,	0,50	-	-	±5,6	±3,9	±3,1	±3,1	±2,4	±3,0
16	0,80	-	-	±3,3	±5,2	±2,1	±3,6	±1,8	±3,2
	0,87	-	-	±3,0	±6,1	±2,0	±3,9	±1,7	±3,4
	1,00	-	-	±2,0	-	±1,3	-	±1,2	-

Примечания к таблицам 3 и 4:

Пределы допускаемого значения поправки часов, входящих в COEB, относительно шкалы времени UTC(SU) ± 5 с

 I_2 – сила тока 2% относительно номинального тока TT;

 I_5 – сила тока 5% относительно номинального тока TT;

 I_{20} – сила тока 20% относительно номинального тока TT;

 I_{100} — сила тока 100% относительно номинального тока TT;

 I_{120} – сила тока 120% относительно номинального тока TT;

 $I_{\mbox{\tiny ИЗМ}}$ —силы тока при измерениях активной и реактивной электрической энергии относительно номинального тока TT;

 $\delta_{Wo}{}^{A}$ — доверительные границы допускаемой основной относительной погрешности при вероятности P=0,95 при измерении активной электрической энергии;

δ_{Wo}^P – доверительные границы допускаемой основной относительной погрешности при вероятности P=0,95 при измерении реактивной электрической энергии;

 $\delta_{W}{}^{A}$ — доверительные границы допускаемой относительной погрешности при вероятности P=0,95 при измерении активной электрической энергии в рабочих условиях применения;

 δ_W^P — доверительные границы допускаемой относительной погрешности при вероятности P=0.95 при измерении реактивной электрической энергии в рабочих условиях применения.

Таблица 5 – Основные технические характеристики ИК

emk.
емк.
мк.
•
2

Надежность системных решений:

- защита от кратковременных сбоев питания сервера с помощью источника бесперебойного питания;
 - резервный сервер с установленным специализированным ПО;
- резервирование каналов связи между уровнями ИИК и ИВК и между ИВК и внешними системами субъектов ОРЭМ, а также с инфраструктурными организациями ОРЭМ.

Ведение журналов событий:

- -счётчика, с фиксированием событий:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике.
- ИВК, с фиксированием событий:
 - даты начала регистрации измерений;
 - перерывы электропитания;
 - программные и аппаратные перезапуски;
 - установка и корректировка времени;
 - переход на летнее/зимнее время;
 - нарушение защиты ИВК;
- отсутствие/довосстановление данных с указанием точки измерений и соответствующего интервала времени.

Защищённость применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
 - счётчика;
 - промежуточных клеммников вторичных цепей напряжения;
 - испытательной коробки;
 - сервера;
- защита информации на программном уровне:
 - результатов измерений при передаче информации (возможность использования цифровой подписи);
 - установка пароля на счетчик;
 - установка пароля на Сервер БД.

Знак утверждения типа

наносится типографским способом на титульный лист формуляра АУВП.411711.053.3.ФО «Система автоматизированная информационно-измерительная коммерческого учета электроэнергии ООО «Газпром энерго» ООО «Газпром добыча Уренгой» УГП-11. Формуляр».

Комплектность средства измерений

Комплектность АИИС КУЭ приведена в таблице 6.

Таблица 6 – Комплектность АИИС КУЭ

Наименование	Обозначение	Количество, шт.
Трансформаторы тока	ТЛМ-10	16
Трансформаторы тока	ТЛО-10	4
Трансформаторы тока	ТОЛ 10	4
Трансформаторы тока	ТВЛМ-10	8
Трансформаторы напряжения	НАМИ-10	2
Счетчики	AS1440-512-RAL-P3W-B	16
ПО ИВК	АльфаЦЕНТР	1
Сервер синхронизации времени	CCB-1Γ	1
Сервер БД	Stratus FT Server 4700 P4700-2S	
Система автоматизированная	АУВП.411711.053.3.ФО	1
информационно-измерительная		
коммерчекого учета электроэнергии ООО		
"Газпром энерго" ООО "Газпром добыча		
Уренгой" УГП-11. Формуляр		

Сведения о методиках (методах) измерений

Методика измерений изложена в документе «Методика измерений электрической энергии с использованием системы автоматизированной информационно-измерительной коммерческого учета электроэнергии ООО «Газпром энерго» ООО «Газпром добыча Уренгой» УГП-11» Методика измерений аттестована Западно-Сибирским филиалом ФГУП «ВНИИФТРИ». Аттестат аккредитации Западно-Сибирского филиала ФГУП «ВНИИФТРИ» по аттестации методик (методов) измерений и метрологической экспертизе № RA.RU.311735 от 19.07.2016 г.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии ООО «Газпром энерго» ООО «Газпром добыча Уренгой» УГП-11

ГОСТ Р 8.596-2002 Государственная система обеспечения единства измерений. Метрологическое обеспечение измерительных систем. Основные положения

ГОСТ 22261-94 Межгосударственный стандарт. Средства измерений электрических и магнитных величин. Общие технические условия (с Изменением №1)

ГОСТ 34.601-90 Межгосударственный стандарт. Автоматизированные системы. Стадии создания

Изготовитель

Инженерно-технический центр Общества с ограниченной ответственностью «Газпром энерго» (Инженерно-технический центр ООО «Газпром энерго»)

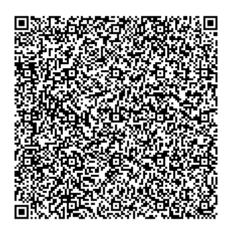
ИНН 7736186950

Адрес: 460000, Российская Федерация, г. Оренбург, ул. Терешковой, д. 295

Телефон: +7 (3532) 687-126 Факс: +7 (3532) 687-127

E-mail: info@of.energo.gazprom.ru.

Испытательный центр


Западно-Сибирский филиал Федерального государственного унитарного предприятия «Всероссийский научно-исследовательский институт физико-технических и радиотехнических измерений» (Западно-Сибирский филиал ФГУП «ВНИИФТРИ»)

Адрес: 630004, Российская Федерация, г. Новосибирск, проспект Димитрова, д. 4

Телефон (факс): +7 (383) 210-08-14, +7 (383) 210-13-60

E-mail: director@sniim.ru

Аттестат аккредитации Западно-Сибирского филиала ФГУП «ВНИИФТРИ» по проведению испытаний средств измерений в целях утверждения типа M RA.RU.310556 от 14.01.2015 г.

