УТВЕРЖДЕНО

приказом Федерального агентства по техническому регулированию и метрологии от «18» февраля 2022 г. № 421

Регистрационный № 84595-22

Лист № 1 Всего листов 18

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Калибраторы многофункциональные и коммуникаторы со встроенным термостатом Beamex MC6-T (-R)

Назначение средства измерений

Калибраторы многофункциональные и коммуникаторы со встроенным термостатом Веатех МС6-Т (-R) предназначены для измерений и воспроизведений сигналов силы и напряжения постоянного тока, сопротивления (в том числе сигналов от термопар и термопреобразователей сопротивления), частоты периодических сигналов, а также для измерений давления и воспроизведения температуры.

Описание средства измерений

Калибраторы многофункциональные и коммуникаторы со встроенным термостатом Beamex MC6-T (-R) (далее - калибраторы) предназначены для поставок в Российскую Федерацию, а также другие страны СНГ, и имеют специальное исполнение (-R).

Калибраторы выполняются в различных модификациях:

- MC6-T150 (-R) имеет две зоны нагрева и охлаждения для оптимального контроля температуры;
- MC6-T660 (-R) имеет трехзонный термостат с раздельным регулированием каждой зоны.

Калибраторы применяются в качестве эталона или рабочего средства измерений при поверке (калибровке) и испытаниях в лабораторных и полевых условиях:

- электроизмерительных приборов, каналов измерительных систем с входными и выходными электрическими сигналами напряжения (В, мВ) и силы постоянного тока (мА), сопротивления, частоты периодических сигналов, количества импульсов, а также различных преобразователей с цифровыми выходными сигналами по протоколам HART, Foundation Fieldbus H1, Profibus PA;
- приборов для измерения давления датчиков давления с аналоговым и цифровым выходным сигналом, манометров, электропневматических и пневмоэлектрических преобразователей давления, а также различных реле;
- преобразователей сигналов термоэлектрических преобразователей и термопреобразователей сопротивления;
 - средств измерения температуры погружного типа;
 - для воспроизведения и поддержания заданной температуры.

По конструктивному исполнению калибраторы являются переносными приборами с питанием от сети либо – кроме воспроизведения температуры и измерений по каналу R3 - от калибраторов аккумуляторов. Ha передней панели жидкокристаллический сенсорный цветной дисплей и клавиатура. На дисплее отображаются результаты измерений/воспроизведений, сведения о режиме работы калибратора, а также виртуальные кнопки для управления режимами калибратора. Каналы измерения (IN) и воспроизведения (ОUТ) сигналов силы и напряжения постоянного тока гальванически развязаны. Калибраторы имеют встроенный источник постоянного напряжения 24 В для питания токовой петли. Возможно подключение калибратора к персональному компьютеру через интерфейс USB. Режим коммуникатора предназначен для обмена данными между калибратором и СИ, которые поддерживают протокол(ы) полевых шин: HART, FOUNDATION Fieldbus H1 или Profibus PA.

Калибраторы имеют три независимых канала (R1, R2, R3) для измерений сопротивления (сигналов термопреобразователей сопротивления) и два независимых канала (TC1, TC2) для измерения низкого напряжения (сигналов термоэлектрических преобразователей).

С помощью высокоточных внутренних и/или внешних модулей измерений давления калибраторы могут измерять значения избыточного, абсолютного давления или разности давлений.

Встроенный в MC6-T (-R) сухоблочный термостат позволяет задавать и поддерживать температуру с известной точностью, а встроенные каналы измерения — измерять выходной сигнал внешнего термопреобразователя сопротивления повышенной точности и/или калибруемого средства измерения.

Калибраторы могут использоваться в комплекте с внешними термопреобразователями сопротивления повышенной точности (далее - TC) с индивидуальной градуировкой (с коэффициентами МТШ-90 (для RPRT) или Каллендара-Ван Дюзена (для IPRT).

Внешние термопреобразователи сопротивления повышенной точности изготавливаются следующих моделей: IPRT-300, RPRT-420-300, RPRT-420-230A, RPRT-660-300, RPRT-660-230A. Модели TC различаются по метрологическим и техническим характеристикам и состоят из платинового чувствительного элемента (далее - ЧЭ), помещенного в тонкостенную защитную трубку из нержавеющей стали, и соединительного кабеля с разъемом. Схема соединения внутренних проводников TC с ЧЭ – 4-х проводная.

Фотографии общего вида калибраторов, места нанесения знака поверки и заводского (серийного) номера представлены на рисунке 1.

Общий вид внешних термопреобразователей сопротивления повышенной точности представлен на рисунках 2-4. Заводской (серийный) номер ТС наносится в виде гравировки на защитную трубку ТС или на бирку, прикреплённую к соединительному кабелю ТС.

Пломбирование калибраторов не предусмотрено.

Рисунок 1 — Общий вид калибратора BEAMEX MC6-T (-R) с указанием места нанесения заводского номера

Рисунок 2 - Общий вид внешних термопреобразователей сопротивления модели IPRT-300

Рисунок 3 - Общий вид внешних термопреобразователей сопротивления моделей RPRT-420-230A, RPRT-660-230A

Рисунок 4 - Общий вид внешних термопреобразователей сопротивления моделей RPRT-420-300, RPRT-660-300

Программное обеспечение

Метрологически значимое программное обеспечение (ПО) зашито в микропроцессоре калибратора и недоступно пользователю, после записи рабочей программы становится невозможно прочитать или изменить какую-либо часть программы. Это выполняется только с помощью специализированных программ в условиях завода-изготовителя калибраторов. Номер версии ПО доступен для просмотра на дисплее после включения калибратора и в меню «Настройки – О приборе».

В калибраторе отсутствует возможность внесения изменений (преднамеренных или непреднамеренных) в ПО посредством внешних интерфейсов или меню калибратора. Уровень защиты ПО «высокий» в соответствии с Р 50.2.077-2014.

Защита калибратора от преднамеренного изменения ПО через внутренний интерфейс (вскрытие калибратора) обеспечивается нанесением гарантийной наклейки на корпус калибратора.

Идентификационные данные метрологически значимого ПО приведены в таблице 1.

Таблица 1 - Идентификационные данные метрологически значимого ПО

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	MC6-T
Номер версии (идентификационный номер ПО)	Версия ПО не ниже 3.20
Цифровой идентификатор ПО	Не используется

Метрологические и технические характеристики

Метрологические характеристики калибраторов представлены в таблицах 2-9.

Таблица 2 – Метрологические характеристики калибраторов при измерении электрических сигналов

Сигналов		
Диапазон измеряемых сигналов и	Разрешение	Пределы допускаемой погрешности 1),
используемые клеммы калибратора	газрешение	δ – относительная, Δ – абсолютная
от -1 до +1 В ²⁾ (TC1, TC2)	0,001 мВ	$\Delta = \pm (0,00007 \cdot X + 4 \text{ мкB})$
от -1 до +1 В ³⁾ (IN)	0,001 мВ	$\Delta = \pm (0,00006 \cdot X + 5 \text{ мкB})$
от 1 до 60 В ³⁾ (IN)	0,01 мВ	$\Delta = \pm (0,00006 \cdot X + 0,25 \text{ мB})$
$ m or - 25 \; дo + 25 \; MA^{4)} (IN)$	0,0001 мА	$\Delta = \pm (0,0001 \cdot X + 1 \text{ мкA})$
от -100 до -25 мА и	0,001 мА	$\Delta = \pm (0.0001 \cdot X + 1 \text{ MKA})$
от $+25$ до $+100$ мА $^{4)}$ (IN)	0,001 MA	$\Delta = \pm (0,0001 \cdot A + 1 \text{ MKA})$
от 0 до 100 Ом (R1, R2, R3)	0,001 Ом	$\Delta=\pm6~\mathrm{MOm}^{5)}$
от 100 до 110 Ом (R1, R2, R3)	0,001 Ом	δ=±0,006 % ⁵⁾
от 110 до 150 Ом (R1, R2, R3)	0,001 Ом	δ=±0,007 % ⁵⁾
от 150 до 300 Ом (R1, R2, R3)	0,001 Ом	δ=±0,008 % ⁵⁾
от 300 до 400 Ом (R1, R2, R3)	0,001 Ом	δ=±0,009 % ⁵⁾
от 400 до 4040 Ом (R1, R2, R3)	0,01 Ом	$\Delta = \pm (0.00015 \cdot X + 12 \text{ MOM})^{5}$

Примечания:

Х – модуль номинального текущего значения сигнала измеряемого параметра.

Электрические параметры встроенного источника питания петли: $24 \text{ B} \pm 5\%$; $I_{\text{макс}} = 55 \text{ мA}$. Напряжение внешнего источника питания петли не более 60 B.

¹⁾ Включая нелинейность, гистерезис, повторяемость и дрейф за 1 год;

 $^{^{2)}}R_{BX} > 10 \text{ MOm}.$

 $^{^{3)}}R_{BX} > 2 MO_{M}$

 $^{^{4)}}R_{\text{BX}} < 10 \text{ Om}.$

⁵⁾ Для 4-х проводного подключения. Для 3-х проводного подключения к значениям пределов допускаемой погрешности, указанным в таблице 2, добавляется 10 мОм

Таблица 3 - Метрологические характеристики калибраторов при генерировании / воспроизведении электрических сигналов

	1	
Диапазон воспроизводимых сигналов и используемые клеммы калибратора	Разрешение	Пределы допускаемой погрешности 1 , Δ – абсолютная
от -1 до +1 В ²⁾ (TC1)	0,001 мВ	$\Delta = \pm (0,00007 \cdot X + 4 \text{ мкB})$
от -3 до +10 ³⁾ (OUT)	0,01 мВ	$\Delta = \pm (0.00007 \cdot X + 0.1 \text{ MB})$
от -3 до +24 В ³⁾ (OUT)	0,1 мВ	$\Delta = \pm (0,00007 \cdot X + 0,1 \text{ мB})$
от 0 до 25 мА ⁴⁾ (OUT)	0,0001 мА	$\Delta = \pm (0,0001 \cdot X + 1 \text{ мкA})$
от 25 до 55 мА ⁴⁾ (OUT)	0,001 мА	$\Delta = \pm (0,0001 \cdot X + 2 \text{ мкA})$
от 0 до 100 Ом (R1)	0,001 Ом	Δ = ±20 мОм
от 100 до 400 Ом (R1)	0,001 Ом	$\Delta = \pm (0,0001 \cdot X + 10 \text{ мОм})$
от 400 ло 4000 Ом (R1)	0.01 Ом	$\Delta = \pm (0.00015 \cdot X + 20 \text{ MOM})$

Примечания:

Таблица 4 - Метрологические характеристики калибраторов при измерении ¹⁾ и генерировании / воспроизведении²⁾ частотных электрических сигналов

Диапазон			Пределы допускаемой
Измерения	Генерирования/ воспроизведения	Разрешение	погрешности $^{3)},$ Δ – абсолютная
от 0,0027 до 0,5 Гц	от 0,0005 до 0,5 Гц	0,000001 Гц	Δ=±(0,00002·F+0,000002 Гц)
от 0,5 до 5 Гц		0,00001 Гц	$\Delta = \pm (0,00002 \cdot F + 0,00002 \ \Gamma ц)$
от 5 до 50 Гц		0,0001 Гц	$\Delta = \pm (0,00002 \cdot F + 0,0002 \ \Gamma ц)$
от 50 до 500 Гц		0,001 Гц	$\Delta = \pm (0,00002 \cdot F + 0,002 \ \Gamma ц)$
от 500 до 5000 Гц		0,01 Гц	$\Delta = \pm (0,00002 \cdot F + 0,02 \Gamma \mu)$
от 5000 до	50000 Гц	0,1 Гц	$\Delta = \pm (0,00002 \cdot F + 0,2 \ \Gamma ц)$

Примечания:

минимальная амплитуда сигнала: $1 \ B \ (<10 \ \kappa\Gamma \mu), 1,2 \ B \ (\text{от } 10 \ \text{до } 50 \ \kappa\Gamma \mu);$ сухой контакт $1 \ B$, контакт под напряжением от минус $1 \ \text{до } 14 \ B$.

амплитуда сигнала (форма сигнала — прямоугольная положительная) $U_{\text{п-п}}$ от 0 до 24 B; амплитуда сигнала (форма сигнала — прямоугольная симметричная) $U_{\text{п-n}}$ от 0 до 6B.

¹⁾ Включая нелинейность, гистерезис, повторяемость и дрейф за 1 год;

X- модуль номинального текущего значения сигнала генерируемого/воспроизводимого параметра.

 $^{^{2)}}I_{\text{make}} = 5 \text{ MA}.$

 $^{^{3)}}I_{\text{make}} = 10 \text{ MA}.$

 $^{^{4)}}$ R_{Harp} ≤ 1140 OM (20 MA), 450 OM (50 MA).

 $^{^{1)}}R_{BX} > 1 \text{ MOM};$

 $^{^{2)}}I_{\text{Makc}}=10 \text{ MA};$

³⁾ Включая нелинейность, гистерезис, повторяемость и дрейф за 1 год;

F — текущее номинальное значение измеряемой или генерируемой/ воспроизводимой частоты.

Таблица 5 - Метрологические характеристики калибраторов при измерении (R1, R2, R3) и воспроизведении (R1) сигналов термопреобразователей сопротивления

оспроизведении (К1) сигналов термопреобразователей сопротивления				
	_	Пределы допускаемой	Пределы допускаемой	
Тип	Диапазон,	погрешности ⁵⁾ (измерение),	погрешности ⁵⁾	
	°C	δ – относительная,	(воспроизведение),	
1	2	Δ – абсолютная	∆ – абсолютная	
1	2	3	4	
50Π (Dt50 or295) 1) 2) 3)	от -200 до +270	Δ=±0,03 °C	Δ=±0,11 °C	
(P130 0383)	от +270 до +850	δ=±0,012 %	$\Delta = \pm (0,00015 \cdot T_{BOC} + 0,11 ^{\circ}C)$	
100Π	от -200 до 0	Δ=±0,015 °C	Δ=±0,05 °C	
$(Pt100 \alpha 385)^{1) (2) (3)}$	от 0 до +850	$\Delta = \pm (0,00012 \cdot T_{\text{\tiny H3M}} + 0,015 ^{\circ}\text{C})$	$\Delta = \pm (0,00014 \cdot T_{BOC} + 0,05 ^{\circ}C)$	
	от -200 до -80	Δ=±0,01 °C	Δ=±0,025 °C	
200Π	от -80 до 0	Δ=±0,02 °C	Δ=±0,035 °C	
(Pt200 $\alpha 385$) (Pt200 $\alpha 385$)	от 0 до +260	$\Delta = \pm (0,00012 \cdot T_{\text{\tiny M3M}} + 0,02 ^{\circ}\text{C})$	$\Delta = \pm (0,00011 \cdot T_{BOC} + 0,04 ^{\circ}C)$	
(11200 0383)	от +260 до +850	$\Delta = \pm (0,0002 \cdot T_{изм} + 0,045 ^{\circ}C)$	$\Delta = \pm (0,0002 \cdot T_{BOC} + 0,06 ^{\circ}C)$	
400Π	от -200 до -100	Δ=±0,01 °C	Δ=±0,015 °C	
(Pt400 α 385) (Pt400 α 385)	от -100 до 0	Δ=±0,02 °C	Δ=±0,03 °C	
(Pt400 \alpha 385)	от 0 до +850	$\Delta = \pm (0.00019 \cdot T_{\text{\tiny H3M}} + 0.045 ^{\circ}\text{C})$	$\Delta = \pm (0,00019 \cdot T_{BOC} + 0,05 ^{\circ}C)$	
500П	от -200 до -120	Δ=±0,01 °C	Δ=±0,015 °C	
(Pt500 α 385) (Pt500 α 385)	от -120 до -50	Δ=±0,02 °C	Δ=±0,025 °C	
	от -50 до 0	Δ=±0,045 °C	Δ=±0,05 °C	
$(500\Pi \alpha 391-06)^{3}$	от 0 до +850	$\Delta = \pm (0.00019 \cdot T_{\text{\tiny M3M}} + 0.045 ^{\circ}\text{C})$	$\Delta = \pm (0,00019 \cdot T_{BOC} + 0,05 ^{\circ}C)$	
1000Π	от -200 до -150	Δ=±0,008 °C	Δ=±0,011 °C	
	от -150 до -50	Δ=±0,031 °C	Δ=±0,035 °C	
$(Pt1000 \alpha 385)^{(1)(2)(3)}$	от -50 до 0	Δ=±0,041 °C	Δ=±0,043 °C	
$(1000\Pi \alpha 391-06)^{3)}$	от 0 до +850	$\Delta = \pm (0.00019 \cdot T_{\text{\tiny H3M}} + 0.041 ^{\circ}\text{C})$	$\Delta = \pm (0,00019 \cdot T_{BOC} + 0,043 ^{\circ}C)$	
	от -200 до 0	Δ=±0,03 °C	-	
50П	от -200 до +270	-	Δ=±0,11 °C	
$(50\Pi \alpha 391)^{1)2)}$	от 0 до +1100	$\Delta = \pm (0.0001 \cdot T_{\text{\tiny H3M}} + 0.03 ^{\circ}\text{C})$	-	
(3011 (3391)	от +270 до	,	A 1/0 00017 T 10 005 9C)	
	+1100	-	$\Delta = \pm (0,00017 \cdot T_{Boc} + 0,065 ^{\circ}C)$	
	от -200 до +50	Δ=±0,03 °C	-	
50П	от -200 до +270	-	Δ=±0,11 °C	
$(50\Pi \alpha 391-06)^{3)}$	от +50 до +850	$\Delta = \pm (0,0001 \cdot T_{\text{\tiny M3M}} + 0,025 ^{\circ}\text{C})$	-	
	от +270 до +850	-	$\Delta = \pm (0,00015 \cdot T_{BOC} + 0,073 ^{\circ}C)$	
100П	от -200 до 0	Δ=±0,015 °C	Δ=±0,05 °C	
	от 0 до +850	$\Delta = \pm (0,00013 \cdot T_{\text{\tiny M3M}} + 0,015 ^{\circ}\text{C})$	$\Delta = \pm (0,00014 \cdot T_{BOC} + 0,05 ^{\circ}C)$	
$(100\Pi \alpha 391)^{1)2)}$	св. 850 до 1100	$\Delta = \pm (0.00025 \cdot T_{\text{\tiny H3M}} + 0.03 ^{\circ}\text{C})$	$\Delta = \pm (0,00027 \cdot T_{BOC} + 0,04 ^{\circ}C)$	
100Π	от -200 до 0	Δ=±0,015 °C	Δ=±0,05 °C	
$(100\Pi \alpha 391-06)^{3)}$	от 0 до +850	$\Delta = \pm (0.00012 \cdot T_{\text{\tiny H3M}} + 0.015 ^{\circ}\text{C})$	$\Delta = \pm (0,00014 \cdot T_{BOC} + 0,05 ^{\circ}C)$	
50M	200 :200			
$(50 \text{M} \alpha 428)^{1) 2)}$	от -200 до +200	Δ=±0,030 °C	Δ=±0,098 °C	
50M	от -180 до +200	Δ=±0,029 °C	Δ=±0,094 °C	
(50M α428-06) ³⁾ OT -180 ДO +200			<u> </u>	

1	2	3	4
100M	от -200 до 0	Δ=±0,015 °C	Δ=±0,049 °C
$(100M \alpha 428)^{1)(2)}$	от 0 до +200	$\Delta = \pm (0,00012 \cdot T_{\text{\tiny H3M}} + 0,015 ^{\circ}\text{C})$	$\Delta = \pm (0,00009 \cdot T_{BOC} + 0,049 ^{\circ}C)$
100M	от -180 до 0	Δ=±0,015 °C	Δ=±0,047 °C
$(100M \alpha 428-06)^{3)}$	от 0 до +200	$\Delta = \pm (0,00012 \cdot T_{\text{\tiny H3M}} + 0,015 ^{\circ}\text{C})$	$\Delta = \pm (0,0001 \cdot T_{BOC} + 0,047 ^{\circ}C)$
50M	от 50 на ±200	A 10.020 °C	A 10.004.9C
$(50 \text{M} \alpha 426)^{1)}$	от -50 до +200	Δ=±0,029 °C	Δ=±0,094 °C
100M	от -50 до 0	Δ=±0,015 °C	Δ=±0,047 °C
$(100M \alpha 426)^{1)}$	от 0 до +200	$\Delta = \pm (0,00012 \cdot T_{\text{\tiny H3M}} + 0,015 ^{\circ}\text{C})$	$\Delta = \pm (0,0001 \cdot T_{BOC} + 0,047 ^{\circ}C)$
100H	от -60до 0	Δ=±0,013 °C	A_+0.042.9C
$(100 \text{H} \alpha 617)^{1)2)3)$	от 0 до +180	$\Delta = \pm (0.00007 \cdot T_{\text{\tiny H3M}} + 0.013 ^{\circ}\text{C})$	Δ=±0,043 °C
	от -200 до 0	Δ=±0,033 °C	-
46Π	от -200 до +300	-	Δ=±0,12 °C
$(46\Pi \alpha 391)^{4)}$	от 0 до +650	$\Delta = \pm (0.00008 \cdot T_{M3M} + 0.033 ^{\circ}C)$	-
	от +300 до +650	<u>-</u>	$\Delta = \pm (0,00015 \cdot T_{BOC} + 0,075 ^{\circ}C)$
53M (53M α426) 4)	от -50 до +200	Δ=±0,027 °C	Δ=±0,089 °C
(33W1 0420)			

Примечания:

Разрешение для всех типов термопреобразователей сопротивления: 0,001 °C.

- 1) МПТШ-68 (ГОСТ 6651-84).
- 2) МТШ-90 (ГОСТ 6651-94).
- ³⁾ МТШ-90 (ГОСТ Р 8.625-2006, ГОСТ 6651-2009).
- ⁴⁾ МПТШ-68 (ГОСТ 6651-78: гр.21,23).
- ⁵⁾ Включая нелинейность, гистерезис, повторяемость и дрейф за 1 год. Для 3-х проводного подключения к значениям пределов допускаемой погрешности, указанным в таблице, добавляется 10 мОм.

 $T_{\text{изм}}$ – текущее номинальное значение измеряемой температуры, °C;

 $T_{вос}$ – текущее номинальное значение воспроизводимой температуры, °C;

Значение силы измерительного тока, пульсирующего в обоих направлениях, при измерении сигналов термопреобразователей сопротивления $I_{\text{изм}}$ для диапазона измерений от 0 до 500 Ом составляет 1 мА, для диапазона измерений свыше 500 Ом — 0,2мА;

Значение силы тока, при воспроизведении сигналов термопреобразователей сопротивления, (при значении воспроизводимого сопротивления от 0 до 650 Ом) Інагр не более 5 мА;

Значение напряжения, при воспроизведении сигналов термопреобразователей сопротивления (при значении воспроизводимого сопротивления от 650 до 4000 Ом) $R_{\text{сим}}$ х $I_{\text{нагр}}$ не более 3,25 В

Таблица 6 - Метрологические характеристики калибраторов при измерении (TC1, TC2) и воспроизведении (TC1) сигналов термоэлектрических преобразователей

Боспроизведении		пектрических преооразователеи Пределы допускаемой погрешности 3)
Тип	Диапазон, °С	(измерение, воспроизведение),
		δ – относительная, Δ – абсолютная
1	2	3
	от 0 до +200	$\Delta = \pm (0.00007 \cdot \text{U} + 4 \text{ мкB})$
HD (D) 1)2)	от +200 до +500	Δ=±2,0 °C
$\Pi P(B)^{(1)(2)}$	от +500 до +800	Δ=±0,8 °C
	от +800 до +1820	Δ=±0,5 °C
	от -50 до 0	Δ=±1,0 °C
пп (р.) 1) 2)	от 0 до +150	Δ=±0,7 °C
$\Pi\Pi$ (R) $^{1)}$ $^{2)}$	от 150 до +400	Δ=±0,45 °C
	от 400 до +1768	Δ=±0,4 °C
	от -50 до 0	Δ=±0,9 °C
пп (с) 1) 2)	от 0 до +100	Δ=±0,7 °C
$\Pi\Pi$ (S) $^{1)}$ $^{2)}$	от +100 до +300	Δ=±0,55 °C
	от +300 до +1768	Δ=±0,45 °C
	от -270 до -200	$\Delta = \pm (0.00007 \cdot \text{U} + 4 \text{ мкB})$
37 A (17) 1) 2)	от -200 до 0	Δ=±(0,001·T+0,1 °C)
XA(K) 1) 2)	от 0 до +1000	$\Delta = \pm (0.00007 \cdot T + 0.1 ^{\circ}C)$
	от +1000 до +1372	δ=±0,017 %
	от -270 до-200	$\Delta = \pm (0.00007 \cdot \text{U} + 4 \text{ мкB})$
$XK(E)^{1)2)}$	от -200 до 0	Δ=±(0,0006·T+0,07 °C)
	от 0 до +1000	Δ=±(0,00005·T+0,07 °C)
	от -270 до -200	$\Delta = \pm (0.00007 \cdot \text{U} + 4 \text{ MKB})$
$MK(T)^{1)(2)}$	от -200 до 0	Δ=±(0,001·T+0,1 °C)
	от 0 до 400	Δ=±0,1 °C
	от -210 до -200	$\Delta = \pm (0.00007 \cdot \text{U} + 4 \text{ мкB})$
ЖК(J) ^{1) 2)}	от -200 до 0	Δ=±(0,0006·T+0,08 °C)
	от 0 до +1200	Δ=±(0,00006·T+0,08 °C)
	от -270 до -200	$\Delta = \pm (0.00007 \cdot \text{U} + 4 \text{ MKB})$
	от -200 до -100	δ=±0,2 %
$HH(N)^{1)(2)}$	от -100 до 0	Δ=±(0,0005·T+0,15 °C)
	от 0 до +800	Δ=±0,15 °C
	от +800 до +1300	Δ=±(0,0001·T+0,07 °C)
U 1)	от -200 до 0	Δ=±(0,0007·T+0,1 °C)
0 ''	от 0 до +600	Δ=±0,1 °C
T 1)	от -200 до 0	Δ=±(0,0004·T+0,08 °C)
L 1)	от 0 до +900	Δ=±(0,00005·T+0,08 °C)
	от -200 до 0	Δ=±(0,00052·T+0,07 °C)
XK(L) 1) 2)	от 0 до +380	Δ=±0,07 °C
M(L)	от +380 до +800	Δ=±(0,00008·T+0,04 °C)

1	2	3
	от 0 до +300	Δ=±(-0,00023·T+0,33 °C)
BP(A)-1 1) 2)	от +300 до +1500	Δ=±(0,00014·T+0,22 °C)
	от +1500 до +2500	Δ=±(0,00039·T-0,15 °C)

Примечания:

Разрешение для всех типов термоэлектрических преобразователей: 0,01 °C.

- ¹⁾ МПТШ-68 (ГОСТ 3044-84, ГОСТ Р 50431-92, МЭК 584-1-77).
- ²⁾ МТШ-90 (ГОСТ Р 8.585 2001).
- 3) Включая нелинейность, гистерезис, повторяемость и дрейф за 1 год, не включая погрешность канала компенсации температуры холодного спая.
- Т модуль текущего номинального значения измеряемой или воспроизводимой температуры, °С;
- U модуль текущего номинального значения напряжения, соответствующего измеряемой или воспроизводимой температуре согласно $^{1)}$ и $^{2)}$, мкВ.

Таблица 7 - Метрологические характеристики калибраторов при автоматической компенсации температуры холодного спая термоэлектрических преобразователей (TC1, TC2)

Диапазон компенсации, °С	Пределы допу погрешности при с окружающей сред +35 °C 1), Δ – аб	температуре ды от +15 до солютная	Пределы допускаемой дополнительной погрешности от изменения температуры окружающей среды в диапазоне от 0 до +15 и от +35 до верхнего предела диапазона рабочих условий, Δ – абсолютная	
от 0 до +45	$\Delta=\pm0,15$	°C	$\Delta=\pm0,005$ °С на 1 °С	
1) Включая нелинейность, гистерезис, повторяемость и дрейф за 1 год.				

Таблица 8 – Метрологические характеристики калибраторов при измерении давления

, , ,			штораторов при измерении	
Внутренние модули	Внешние модули EXT и EXT-IS	Панельные модули EXT CENTRiCAL	Диапазон измерений ¹⁾	Пределы допускаемой погрешности ²⁾
1	2	3	4	6
PB	EXTB, EXTB-IS	EXTB CENTRiCAL	от 70 до 120 кПа абс.	±0,05 кПа
	EXT10mD, EXT10mD-IS	EXT10mD CENTRiCAL	от -1 до 1 кПа	±(0,10 % П + 0,05 % Д)
	EXT100m, EXT100m-IS	EXT100m CENTRiCAL	от 0 до 10 кПа	±(0,025 % П + 0,025 % ВП)
	EXT250mC, EXT250mC-IS		от -25 до 25 кПа	±(0,025 % Π + 0,025 % ΒΠ)
	EXT400mC, EXT400mC-IS	EXT400mC CENTRiCAL	от -40 до 40 кПа	±(0,025 % Π + 0,02 % ΒΠ)
	EXT630mC, EXT630mC-IS		от -63 до 63 кПа	±(0,025 % Π + 0,02 % ΒΠ)
	EXT1C, EXT1C-IS	EXT1C CENTRiCAL	от -100 до 100 кПа	±(0,025 % П + 0,015 % ВП)
	EXT1,6C, EXT1,6C-IS		от -100 до 160 кПа	±(0,025 % Π + 0,015 % ΒΠ)
	EXT2C, EXT2C-IS	EXT2C CENTRiCAL	от -100 до 200 кПа	±(0,025 % Π + 0,01 % ΒΠ)
	EXT2,5C, EXT2,5C-IS		от -100 до 250 кПа	±(0,025 % Π + 0,01 % ΒΠ)
	EXT4C, EXT4C-IS	_	от -100 до 400 кПа	±(0,025 % Π + 0,01 % ΒΠ)
	EXT6C, EXT6C-IS	EXT6C CENTRiCAL	от -100 до 600 кПа	±(0,025 % Π + 0,01 % ΒΠ)
	EXT10C, EXT10C-IS		от -100 до 1000 кПа	±(0,025 % Π + 0,01 % ΒΠ)
	EXT16C, EXT16C-IS		от -100 до 1600 кПа	±(0,025 % Π + 0,01 % ΒΠ)
	EXT20C, EXT20C-IS	EXT20C CENTRiCAL	от -100 до 2000 кПа	±(0,025 % Π + 0,01 % ΒΠ)
	EXT25, EXT25-IS	_	от 0 до 2500 кПа	±(0,025 % Π + 0,01 % ΒΠ)
	EXT40, EXT40-IS	_	от 0 до 4 МПа	±(0,025 % Π + 0,01 % ΒΠ)
	EXT60, EXT60-IS	EXT60 CENTRiCAL	от 0 до 6 МПа	±(0,025 % Π + 0,01 % ΒΠ)
_	EXT100, EXT100-IS	EXT100 CENTRICAL	от 0 до 10 МПа	±(0,025 % Π + 0,01 % ΒΠ)

1	2	3	4	6
	EXT160,	EXT160	от 0 то 16 МПо	±(0,025 % П +
_	EXT160-IS	CENTRiCAL	от 0 до 16 МПа	0,01 % ВП)
	EXT250,	EXT250	от 0 до 25 МПа	±(0,025 % Π +
	EXT250-IS	CENTRICAL	01 0 до 23 WIIIa	0,015 % ВП)
	EXT400,		от 0 до 40 МПа	±(0,025 % Π +
	EXT400-IS		01 0 до 40 МПа	0,015 % ВП)
	EXT600,	EXT600	от 0 до 60 МПа	±(0,025 % Π +
	EXT600-IS	CENTRICAL	от о до оо мита	0,015 % ВП)
	EXT1000,		от 0 до 100 МПа	±(0,025 % Π +
	EXT1000-IS	· · · · · · · · · · · · · · · · · · ·	от о до тоо мита	0,015 % ВП)
	EXT200mC-s,		от -20 до 20 кПа	±(0,05 % Π +
	EXT200mC-s-IS	· · · · · · · · · · · · · · · · · · ·	01 -20 до 20 киа	0,05 % ВП)
	EXT2C-s,		от -100	±0,05 % BΠ
	EXT2C-s-IS	· · · · · · · · · · · · · · · · · · ·	до 200 кПа	±0,03 /0 D11
	EXT20C-s,		от -100	±0,05 % BΠ
	EXT20C-s-IS		до 2000 кПа	±0,03 % D11
	EXT160-s,		от 0 до 16 МПа	±0,05 % BΠ
_	EXT160-s-IS		от о до то мита	±0,03 /0 D11

Примечания:

 Π – показание;

Д – диапазон измерений;

ВП – верхний предел измерений

Пределы допускаемой дополнительной погрешности от изменения температуры окружающей среды в диапазоне от 0 до +15 °C и от св. +35 до +45 °C:

- $\pm 0,001$ % П на 1 °С;
- $\pm 0{,}002~\%$ Д на 1 °C (для модулей EXT10mD, EXT10mD-IS, EXT10mD CENTRiCAL)

¹⁾ При наличии установленного в калибратор внутреннего барометрического модуля РВ любой модуль давления может измерять как избыточное, так и абсолютное давление.

²⁾ Включая нелинейность, гистерезис, повторяемость и дрейф при температуре от св. +15 до +35 °C.

Таблица 9 - Метрологические характеристики калибраторов при воспроизведении

температуры

температуры	2,,,,,,,	allia vanaktaniketiiki		
11	Значение характеристики (в зависимости от модели калибратора) 1) 2)			
Наименование характеристики				
	MC6-T150 (-R)	MC6-T660 (-R)		
1	2	3		
Диапазон воспроизводимых температур, °С	от -30 ³⁾ до +150	от +50 ⁴⁾ до +660		
Пределы допускаемой основной абсолютной погрешности установления заданной температуры по внутреннему термометру при температуре окружающей среды от +13 до +33 °C включ., °C	±0,15°C	$\pm 0,2$ (в диапазоне от $+50$ до $+150$ °C включ.); $\pm 0,3$ (в диапазоне св. $+150$ до $+420$ °C включ.); $\pm 0,5$ °C (в диапазоне св. $+420$ до $+660$ °C)		
Пределы допускаемой дополнительной абсолютной погрешности установления заданной температуры при температуре окружающего среды от 0 до 13°C (не включ.) и св. 33 до 45°C, °C/°C	±0,006	$\pm 0,00003 \cdot t_{_{3ад}}$ где $t_{_{3ад}}$ – значение заданной температуры, °C		
Пределы допускаемой абсолютной погрешности измерений температуры с использованием внешнего термопреобразователя сопротивления повышенной точности при температуре окружающей среды от +13 до +33 °C включ., °C:				
- для модели IPRT-300 ⁵⁾	$\pm (0,00048 \cdot t_{_{ИЗМ}} + 0,05),$ где $t_{_{ИЗМ}}$ – модуль значения измеряемой температуры, °C	$\pm (0,00048 \cdot t_{\scriptscriptstyle \rm H3M} + 0,036)$ (в диапазоне от +50 до +300 °C)		
- для моделей RPRT-420-300, RPRT-420-230A ⁶	±0,04	$\pm 0,04$ (в диапазоне от +50 до +150 °C включ.); $\pm (0,00028 \cdot t_{\scriptscriptstyle \rm H3M} +0,017)$ (в диапазоне св. +150 до +420 °C)		
- для моделей RPRT-660-300, RPRT-660-230A ⁷⁾	±0,04	$\pm 0,04$ (в диапазоне от +50 до +150 °C включ.); $\pm (0,00028 \cdot t_{\scriptscriptstyle \rm H3M} +0,017)$ (в диапазоне св. +150 до +660 °C)		

продолжение гаолицы 9			
	Значение характеристики		
Наименование характеристики	(в зависимости от модели калибратора)(1)(2)		
	MC6-T150 (-R)	MC6-T660 (-R)	
		$\pm 0,02$ (в диапазоне	
Нестабильность поддержания		от +50 до +150 °C включ.);	
заданной температуры в течение	±0,01	$\pm 0,03$ (в диапазоне	
30 минут после достижения	±0,01	св. +150 до +420 °C включ.);	
режима стабилизации, °С		$\pm 0,04$	
		(в диапазоне св. +420 до +660 °C)	
Осевая неоднородность			
температуры от дна канала			
вставного блока, °С, не более:		10.15 /	
		±0,15 (в диапазоне	
		от +50 до +150 °C включ.);	
- на расстоянии от 0 до 40 мм	10.05	±0,25	
включ.	±0,05	(в диапазоне	
		св. +150 до +420 °С включ.); ± 0.4	
		 (в диапазоне св. +420 до +660 °C)	
		±0,2	
		(в диапазоне	
	±0,07	от +50 до +150 °C включ.);	
- на расстоянии св. 40 до 60 мм		±0,4	
		(в диапазоне	
		св. +150 до +420 °C включ.);	
		$\pm 0,6$	
		(в диапазоне св. +420 до +660 °C)	
		±0,02	
		(в диапазоне	
Радиальная неоднородность		от +50 до +150 °C включ.);	
температуры, измеренная в двух	±0,01°C	$\pm 0,05$	
каналах одного диаметра	=0,01 C	(в диапазоне	
вставного блока, °С, не более		св. +150 до +420 °С включ.);	
		±0,08	
2,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		(в диапазоне св. +420 до +660 °C)	
Значение единицы младшего разряда, °C	0,001	0,001	
Глубина термостата, мм	150	150	
Наружный диаметр вставного	30	24,5	
блока, мм		۵۳,۶	
	19	1.7	
Время нагрева, мин, не более:	(от 23 до +150 °C)	15	
	23 (or 30 ro +150 °C)	(от +50 до +660 °C)	
	(от -30 до +150 °C)		

Tipogesia Tuesings	Значение характеристики		
Наименование характеристики	(в зависимости от модели калибратора) $^{(1)(2)}$		
	MC6-T150 (-R)	MC6-T660 (-R)	
Время охлаждения, мин, не более:	17		
	(от +150 до 23 °C)	25	
	23	(от +660 до +100 °C)	
	(от +23 до -30 °C)	35	
	37	(от +660 до +50 °C)	
	(от +150 до -30 °C)		
Время стабилизации			
воспроизводимой температуры			
после выхода калибратора на	10	10	
заданное значение температуры,			
мин, не более			

Примечания:

- 1) Допускается использование калибраторов в диапазоне воспроизводимых температур по внутреннему термометру и (или) в диапазоне измерений с использованием внешнего термопреобразователя сопротивления повышенной точности, согласованном с пользователем, но лежащим внутри полного диапазона воспроизводимых температур используемого калибратора и (или) используемого ТС повышенной точности.
- ²⁾ Допускается применение калибраторов с использованием внутреннего термометра и (или) внешнего термопреобразователя сопротивления повышенной точности.
- ³⁾ При окружающей температуре не более +23 °C.
- 4) При окружающей температуре не более +30 °C.
- ⁵⁾ Максимальное значение температуры применения ТС модели IPRT-300: +300 °C;
- 6) Максимальное значение температуры применения TC моделей RPRT-420-300, RPRT-420-230A: +420 °C.
- $^{7)}$ Максимальное значение температуры применения TC моделей RPRT-660-300, RPRT-660-230A: +660 °C.

Таблица 10 - Основные технические характеристики

Значение					
Наименование характеристики	MC6-T150 (-R)	MC6-T660 (-R)			
Папаматти аминический батарам 1).	MC0-1130 (-K)	MC0-1000 (-K)			
Параметры аккумуляторной батареи 1): - тип аккумуляторной батареи	т:	DO			
* * 1	Li-PO				
- емкость аккумуляторной батареи	4300 мАч				
Параметры электропитания	207	252			
- напряжение сети переменного тока, В	от 207 до 253				
- частота, Гц	от 50 до 60				
Потребляемая мощность при работе от сети	380 BT	1560 Вт			
переменного тока, Вт, не более					
Габаритные размеры, мм, не более					
- длина	322				
- ширина	180				
- высота	298				
Масса, кг, не более	9,4	8,6			
Рабочие условия:					
- температура окружающего воздуха, °С	от 0 до +45				
- относительная влажность, % без конденсации	до 90				
- атмосферное давление, кПа	от 66,0 до 106,7				
Условия транспортирования и хранения					
- температура окружающего воздуха, °С	от -20 до +60				
- относительная влажность, % без конденсации	от 10 до 60				
	1 x USB A,				
Интерфейс	1 x USB B,				
	1 x RJ45				
Параметры измерения/воспроизведения					
количества импульсов:					
- диапазон измерения/воспроизведения					
количества импульсов	от 0 до 999999 импульсов				
- разрешение	1 импульс				
- частота измерения / воспроизведения		•			
количества импульсов, Гц	от 0,0005 д	до 10000,0			
Д	- , ,	. ,			

Примечание:

Знак утверждения типа

наносится на титульный лист руководства по эксплуатации типографским способом.

⁽т.е. отключенным от электросети), кроме функций воспроизведения температуры и измерений в канале R3.

Комплектность средства измерений

Таблица 11 – Комплектность средства измерений

1 аолица 11 — Комплектность средства измерении	0.5	T.0
Наименование	Обозначение	Количество
1	2	3
Калибратор многофункциональный и коммуникатор со встроенным термостатом MC6-T (-R) с установленным внутренним аккумулятором	Модель определяется заказом	1 шт.
Внутренний блок коммуникации по протоколам FieldBus, ProfiBus (по заказу)	_	
Инструмент для извлечения вставных трубок		1 шт.
Комплект контрольных проводов, кабель USB, шнур питания	_	1 шт.
Кабель с разъемом LEMO для подключения к каналу R2 (по заказу)	_	_
Жёсткий кейс (по заказу)	_	
Руководство по эксплуатации на русском языке	_	1 экз.
Внутренний барометрический и внешние модули давления с соединительным кабелем (по заказу)	_	_
Внешний термопреобразователь сопротивления повышенной точности (по заказу)	_	_
Вставные трубки для термостата (по заказу)	_	
Съемный держатель вставных трубок (по заказу)	_	
Пневматические и гидравлические насосы с фитингами, трубками, шлангами и кейсами (по заказу)	_	_
Программное обеспечение (по заказу)	_	

Сведения о методиках (методах) измерений

приведены в руководстве по эксплуатации «МС6-Т Калибраторы многофункциональные и коммуникаторы со встроенным термостатом» в разделе «Калибровка средств измерения».

Нормативные и технические документы, устанавливающие требования к калибраторам многофункциональным и коммуникаторам со встроенным термостатом Beamex MC6-T (-R)

ГОСТ Р 52931-2008 Приборы контроля и регулирования технологических процессов. Общие технические условия

ГОСТ 6651-2009 ГСИ. Термопреобразователи сопротивления из платины, меди и никеля. Общие технические требования и методы испытаний

ГОСТ Р 8.585-2001 ГСИ. Преобразователи термоэлектрические. Номинальные статические характеристики преобразования

Международный стандарт МЭК 60751 (2008, 07) Промышленные чувствительные элементы термометров сопротивления из платины

Международный стандарт МЭК 60584-1:2013 (2013, 08) Термопары. Часть 1. Градуировочные таблицы и допуска

Приказ Росстандарта № 3456 от 30.12.2019 г. «Об утверждении государственной поверочной схемы для средств измерений электрического сопротивления постоянного и переменного тока»

Приказ Росстандарта № 2091 от 01.10.2018 г. «Об утверждении государственной поверочной схемы для средств измерений силы постоянного электрического тока в диапазоне от $1\cdot10^{-16}$ до $100~\mathrm{A}$ »

Приказ Росстандарта № 3457 от 30.12.2019 г. «Об утверждении государственной поверочной схемы для средств измерений постоянного электрического напряжения и электродвижущей силы»

Приказ Росстандарта № 1621 от 29.06.2018 г. «Об утверждении государственной поверочной схемы для средств измерений времени и частоты»

Приказ Росстандарта № 1339 от 29.06.2018 г. «Об утверждении государственной поверочной схемы для средств измерений избыточного давления до 4000 МПа»

Приказ Росстандарта № 2900 от 06.12.2019 г. «Об утверждении государственной поверочной схемы для средств измерений абсолютного давления в диапазоне $1\cdot 10^{-1}$ - $1\cdot 10^7$ Па»

ГОСТ 8.187-76 ГСИ. Государственный специальный эталон и общесоюзная поверочная схема для средств измерений разности давлений до $4\cdot10^4$ Па

ГОСТ 8.558-2009 ГСИ. Государственная поверочная схема для средств измерений температуры

Стандарт предприятия Калибраторы многофункциональные и коммуникаторы со встроенным термостатом Beamex MC6-T (-R)

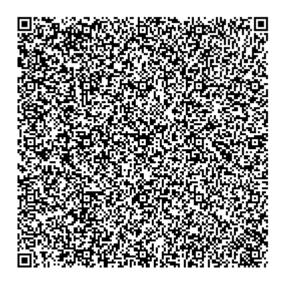
Изготовитель

Компания «Beamex Oy AB», Финляндия

Адрес: Ristisuonraitti 10, FIN-68600 Pietarsaari, Finland

Телефон: +358-10-550-5000 Web-сайт: www.beamex.com E-mail: info@beamex.com

Испытательный центр


Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы» (ФГУП «ВНИИМС»)

Адрес: 119361, Россия, г. Москва, ул. Озерная, д.46

Телефон: +7 (495) 437-55-77 Факс: +7 (495) 430-57-25 Web-сайт: www.vniims.ru E-mail: office@vniims.ru

Аттестат аккредитации ФГУП «ВНИИМС» по проведению испытаний средств

измерений в целях утверждения типа № 30004-13 от 29.03.2018 г.

